Abstract
In the area of bio-informatics, large amount of data is harvested with functional and genetic features of proteins. The structure of protein plays an important role in its biological and genetic functions. In this study, we propose a protein structure prediction scheme based novel learning algorithms – the extreme learning machine and the Support Vector Machine using multiple kernel learning, The experimental validation of the proposed approach on a publicly available protein data set shows a significant improvement in performance of the proposed approach in terms of accuracy of classification of protein folds using multiple kernels where multiple heterogeneous feature space data are available. The proposed method provides the higher recognition ratio as compared to other methods reported in previous studies
Original language | English |
---|---|
Title of host publication | Neural Information Processing |
Editors | Tingwen Huang, Zhigang Zeng, Chuandong Li, Chi Sing Leung |
Place of Publication | Berlin |
Publisher | Springer |
Pages | 1-6 |
Number of pages | 6 |
Volume | 7666 |
ISBN (Electronic) | 9783642344787 |
ISBN (Print) | 9783642344770 |
DOIs | |
Publication status | Published - 2012 |
Event | 19th International Conference on Neural Information Processing 2012 - Doha, Doha, Qatar Duration: 12 Nov 2012 → 15 Nov 2012 |
Conference
Conference | 19th International Conference on Neural Information Processing 2012 |
---|---|
Country/Territory | Qatar |
City | Doha |
Period | 12/11/12 → 15/11/12 |