Abstract
In this paper, a novel digital image watermarking algorithm based on a fast neural network known as Extreme Learning Machine (ELM) for two grayscale images is proposed. The ELM algorithm is very fast and completes its training in milliseconds unlike its other counterparts such as BPN. The proposed watermarking algorithm trains the ELM by using low frequency coefficients of the grayscale host image in transform domain. The trained ELM produces a sequence of 1024 real numbers, normalized as per N(0, 1) as an output. This sequence is used as watermark to be embedded within the host image using Cox's formula to obtain the signed image. The visual quality of the signed images is evaluated by PSNR. High PSNR values indicate that the quality of signed images is quite good. The computed high value of SIM (X, X*) establishes that the extraction process is quite successful and overall the algorithm finds good practical applications, especially in situations that warrant meeting time constraints.
Original language | English |
---|---|
Title of host publication | The 2012 International Joint Conference on Neural Networks (IJCNN) |
Editors | Hussein Abbass, Daryl Essam, Ruhul Sarker |
Place of Publication | Brisbane |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 1-6 |
Number of pages | 6 |
ISBN (Electronic) | 9781467314909, 9781467314893 |
ISBN (Print) | 9781467314886 |
DOIs | |
Publication status | Published - 2012 |
Event | 2012 International Joint Conference on Neural Networks (IJCNN) - Brisbane, Brisbane, Australia Duration: 10 Jul 2012 → 15 Jul 2012 |
Conference
Conference | 2012 International Joint Conference on Neural Networks (IJCNN) |
---|---|
Abbreviated title | IJCNN 2012 |
Country/Territory | Australia |
City | Brisbane |
Period | 10/07/12 → 15/07/12 |