A Phylogenetic Analysis of Pygmy Perches (Teleostei: Percichthyidae) with an Assessment of the Major Historical Influences on Aquatic Biogeography in Southern Australia

Peter Unmack, Michael Hammer, Mark Adams, Thomas Dowling

    Research output: Contribution to journalArticle

    25 Citations (Scopus)

    Abstract

    The biogeography of southern Australia is characterized by a repeated pattern of relatedness between the biota of southwestern and southeastern Australia. Both areas possess a temperate climate but are separated by a vast arid region, currently lacking permanent freshwater habitats, which has become increasingly drier since about 15 Ma. Aquatic organisms have thus potentially remained isolated for a considerable time. Pygmy perches (Nannatherina and Nannoperca, Percichthyidae) provide an excellent scenario for investigating biogeographic relationships between southwestern and southeastern regions as multiple species occur on either side of Australia. This allows us to potentially differentiate between “Multiple Invasion” and “Endemic Speciation,” the two major hypotheses proposed to account for current distributions. The first suggests that multiple east–west movements have occurred, whereas the second suggests a single east–west split, with current biodiversity in each region being reciprocally monophyletic. Systematic relationships within this group were investigated with the mitochondrial cytochrome b gene; nuclear intron and exon sequences from S7, RAG1, and RAG2; and 53 allozyme loci. Our data supported the hypothesis of multiple movements across southern Australia based on a consistent lack of support for reciprocal monophyly of eastern and western species. This study appears to be the first example of an animal group displaying clear multiple east–west movement in southern Australia, as all other aquatic and terrestrial fauna previously examined displayed a single east–west split. Despite a high degree of sympatry within each region, the only evidence for hybridization was found between Nannoperca australis and N. obscura, with the latter having its mitochondrial genome completely replaced by that of N. australis, with no evidence for nuclear introgression. This is one of only a few confirmed examples of complete replacement of the mitochondrial genome in one species with that of another. Cryptic differentiation was also evident within the two most widespread species, N. australis and N. vittata, indicating that these likely consist of multiple species. We also highlight the need for multiple molecular markers with different strengths in order to obtain a more robust phylogeny, despite problems resulting from potential incongruences between data sets.
    Original languageEnglish
    Pages (from-to)797-812
    Number of pages16
    JournalSystematic Biology
    Volume60
    DOIs
    Publication statusPublished - 2011

    Fingerprint

    Percichthyidae
    biogeography
    phylogenetics
    phylogeny
    Mitochondrial Genome
    genome
    ethyl-2-methylthio-4-methyl-5-pyrimidine carboxylate
    Perches
    Sympatry
    Biota
    Aquatic Organisms
    Cytochromes b
    sympatry
    Biodiversity
    introgression
    aquatic organisms
    Phylogeny
    perch
    allozyme
    aquatic organism

    Cite this

    @article{f1d54a6297774a79a28ff2c98ca626f3,
    title = "A Phylogenetic Analysis of Pygmy Perches (Teleostei: Percichthyidae) with an Assessment of the Major Historical Influences on Aquatic Biogeography in Southern Australia",
    abstract = "The biogeography of southern Australia is characterized by a repeated pattern of relatedness between the biota of southwestern and southeastern Australia. Both areas possess a temperate climate but are separated by a vast arid region, currently lacking permanent freshwater habitats, which has become increasingly drier since about 15 Ma. Aquatic organisms have thus potentially remained isolated for a considerable time. Pygmy perches (Nannatherina and Nannoperca, Percichthyidae) provide an excellent scenario for investigating biogeographic relationships between southwestern and southeastern regions as multiple species occur on either side of Australia. This allows us to potentially differentiate between “Multiple Invasion” and “Endemic Speciation,” the two major hypotheses proposed to account for current distributions. The first suggests that multiple east–west movements have occurred, whereas the second suggests a single east–west split, with current biodiversity in each region being reciprocally monophyletic. Systematic relationships within this group were investigated with the mitochondrial cytochrome b gene; nuclear intron and exon sequences from S7, RAG1, and RAG2; and 53 allozyme loci. Our data supported the hypothesis of multiple movements across southern Australia based on a consistent lack of support for reciprocal monophyly of eastern and western species. This study appears to be the first example of an animal group displaying clear multiple east–west movement in southern Australia, as all other aquatic and terrestrial fauna previously examined displayed a single east–west split. Despite a high degree of sympatry within each region, the only evidence for hybridization was found between Nannoperca australis and N. obscura, with the latter having its mitochondrial genome completely replaced by that of N. australis, with no evidence for nuclear introgression. This is one of only a few confirmed examples of complete replacement of the mitochondrial genome in one species with that of another. Cryptic differentiation was also evident within the two most widespread species, N. australis and N. vittata, indicating that these likely consist of multiple species. We also highlight the need for multiple molecular markers with different strengths in order to obtain a more robust phylogeny, despite problems resulting from potential incongruences between data sets.",
    keywords = "Biogeography, incongruence, introgression, mitochondrial replacement, molecular clock, Nannoperca, Nullarbor, Percichthyidae",
    author = "Peter Unmack and Michael Hammer and Mark Adams and Thomas Dowling",
    year = "2011",
    doi = "10.1093/sysbio/syr042",
    language = "English",
    volume = "60",
    pages = "797--812",
    journal = "Systematic Zoology",
    issn = "1063-5157",
    publisher = "Oxford University Press",

    }

    A Phylogenetic Analysis of Pygmy Perches (Teleostei: Percichthyidae) with an Assessment of the Major Historical Influences on Aquatic Biogeography in Southern Australia. / Unmack, Peter; Hammer, Michael; Adams, Mark; Dowling, Thomas.

    In: Systematic Biology, Vol. 60, 2011, p. 797-812.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - A Phylogenetic Analysis of Pygmy Perches (Teleostei: Percichthyidae) with an Assessment of the Major Historical Influences on Aquatic Biogeography in Southern Australia

    AU - Unmack, Peter

    AU - Hammer, Michael

    AU - Adams, Mark

    AU - Dowling, Thomas

    PY - 2011

    Y1 - 2011

    N2 - The biogeography of southern Australia is characterized by a repeated pattern of relatedness between the biota of southwestern and southeastern Australia. Both areas possess a temperate climate but are separated by a vast arid region, currently lacking permanent freshwater habitats, which has become increasingly drier since about 15 Ma. Aquatic organisms have thus potentially remained isolated for a considerable time. Pygmy perches (Nannatherina and Nannoperca, Percichthyidae) provide an excellent scenario for investigating biogeographic relationships between southwestern and southeastern regions as multiple species occur on either side of Australia. This allows us to potentially differentiate between “Multiple Invasion” and “Endemic Speciation,” the two major hypotheses proposed to account for current distributions. The first suggests that multiple east–west movements have occurred, whereas the second suggests a single east–west split, with current biodiversity in each region being reciprocally monophyletic. Systematic relationships within this group were investigated with the mitochondrial cytochrome b gene; nuclear intron and exon sequences from S7, RAG1, and RAG2; and 53 allozyme loci. Our data supported the hypothesis of multiple movements across southern Australia based on a consistent lack of support for reciprocal monophyly of eastern and western species. This study appears to be the first example of an animal group displaying clear multiple east–west movement in southern Australia, as all other aquatic and terrestrial fauna previously examined displayed a single east–west split. Despite a high degree of sympatry within each region, the only evidence for hybridization was found between Nannoperca australis and N. obscura, with the latter having its mitochondrial genome completely replaced by that of N. australis, with no evidence for nuclear introgression. This is one of only a few confirmed examples of complete replacement of the mitochondrial genome in one species with that of another. Cryptic differentiation was also evident within the two most widespread species, N. australis and N. vittata, indicating that these likely consist of multiple species. We also highlight the need for multiple molecular markers with different strengths in order to obtain a more robust phylogeny, despite problems resulting from potential incongruences between data sets.

    AB - The biogeography of southern Australia is characterized by a repeated pattern of relatedness between the biota of southwestern and southeastern Australia. Both areas possess a temperate climate but are separated by a vast arid region, currently lacking permanent freshwater habitats, which has become increasingly drier since about 15 Ma. Aquatic organisms have thus potentially remained isolated for a considerable time. Pygmy perches (Nannatherina and Nannoperca, Percichthyidae) provide an excellent scenario for investigating biogeographic relationships between southwestern and southeastern regions as multiple species occur on either side of Australia. This allows us to potentially differentiate between “Multiple Invasion” and “Endemic Speciation,” the two major hypotheses proposed to account for current distributions. The first suggests that multiple east–west movements have occurred, whereas the second suggests a single east–west split, with current biodiversity in each region being reciprocally monophyletic. Systematic relationships within this group were investigated with the mitochondrial cytochrome b gene; nuclear intron and exon sequences from S7, RAG1, and RAG2; and 53 allozyme loci. Our data supported the hypothesis of multiple movements across southern Australia based on a consistent lack of support for reciprocal monophyly of eastern and western species. This study appears to be the first example of an animal group displaying clear multiple east–west movement in southern Australia, as all other aquatic and terrestrial fauna previously examined displayed a single east–west split. Despite a high degree of sympatry within each region, the only evidence for hybridization was found between Nannoperca australis and N. obscura, with the latter having its mitochondrial genome completely replaced by that of N. australis, with no evidence for nuclear introgression. This is one of only a few confirmed examples of complete replacement of the mitochondrial genome in one species with that of another. Cryptic differentiation was also evident within the two most widespread species, N. australis and N. vittata, indicating that these likely consist of multiple species. We also highlight the need for multiple molecular markers with different strengths in order to obtain a more robust phylogeny, despite problems resulting from potential incongruences between data sets.

    KW - Biogeography

    KW - incongruence

    KW - introgression

    KW - mitochondrial replacement

    KW - molecular clock

    KW - Nannoperca

    KW - Nullarbor

    KW - Percichthyidae

    U2 - 10.1093/sysbio/syr042

    DO - 10.1093/sysbio/syr042

    M3 - Article

    VL - 60

    SP - 797

    EP - 812

    JO - Systematic Zoology

    JF - Systematic Zoology

    SN - 1063-5157

    ER -