A review of the anatomical, biomechanical and kinematic findings of posterior cruiciate ligament injury with respect to non operative management

Sivashankar Chandrasekaran, David Ma, Jennie Scarvell, Kevin Woods, Paul Smith

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

An understanding of the kinematics of posterior cruciate ligament (PCL) deficiency is important for the diagnosis and management of patients with isolated PCL injury. The kinematics of PCL injury has been analysed through cadaveric and in vivo imaging studies. Cadaveric studies have detailed the anatomy of the PCL. It consists of two functional bundles, anterolateral and posteromedial, which exhibit different tensioning patterns through the arc of knee flexion. Isolated sectioning of the PCL and its related structures in cadaveric specimens has defined its primary and secondary restraining functions. The PCL is the primary restraint to posterior tibia translation above 30° and is a secondary restraint below 30° of knee flexion. Furthermore, sectioning of the PCL produces increased chondral deformation forces in the medial compartment as the knee flexes. However, the drawback of cadaveric studies is that they can not replicate the contribution of surrounding neuromuscular structures to joint stability that occurs in the clinical setting. To address this, there have been in vivo studies that have examined the kinematics of the PCL deficient knee using imaging modalities whilst subjects perform dynamic manoeuvres. These studies demonstrate significant posterior subluxation of the medial tibia as the knee flexes. The results of these experimental studies are in line with clinical consequences of PCL deficiency. In particular, arthroscopic evaluation of subjects with isolated PCL injuries demonstrate an increased incidence of chondral lesions in the medial compartment. Yet despite the altered kinematics with PCL injury only a minority of patients require surgery for persistent instability and the majority of athletes are able to return to sport following a period of non-operative rehabilitation. Specifically, non-operative management centres on a programme of quadriceps strengthening and hamstring inhibition to minimise posterior tibial load. The mechanism behind the neuromuscular adaptation that allows the majority of athletes to return to sport has been investigated but not clearly elucidated. The purpose of this review paper is to draw together the findings of experimental studies on the anatomical and kinematic effects of PCL injury and summarise their relevance with respect to non-operative management and functional outcome in patients with isolated PCL deficiency
Original languageEnglish
Pages (from-to)738-745
Number of pages8
JournalKnee
Volume19
Issue number6
DOIs
Publication statusPublished - 2012
Externally publishedYes

Fingerprint

Posterior Cruciate Ligament
Ligaments
Biomechanical Phenomena
Wounds and Injuries
Knee
Tibia
Athletes
Cartilage

Cite this

Chandrasekaran, Sivashankar ; Ma, David ; Scarvell, Jennie ; Woods, Kevin ; Smith, Paul. / A review of the anatomical, biomechanical and kinematic findings of posterior cruiciate ligament injury with respect to non operative management. In: Knee. 2012 ; Vol. 19, No. 6. pp. 738-745.
@article{9f9c10b4cf7a4349ba16c49fbdd8153e,
title = "A review of the anatomical, biomechanical and kinematic findings of posterior cruiciate ligament injury with respect to non operative management",
abstract = "An understanding of the kinematics of posterior cruciate ligament (PCL) deficiency is important for the diagnosis and management of patients with isolated PCL injury. The kinematics of PCL injury has been analysed through cadaveric and in vivo imaging studies. Cadaveric studies have detailed the anatomy of the PCL. It consists of two functional bundles, anterolateral and posteromedial, which exhibit different tensioning patterns through the arc of knee flexion. Isolated sectioning of the PCL and its related structures in cadaveric specimens has defined its primary and secondary restraining functions. The PCL is the primary restraint to posterior tibia translation above 30° and is a secondary restraint below 30° of knee flexion. Furthermore, sectioning of the PCL produces increased chondral deformation forces in the medial compartment as the knee flexes. However, the drawback of cadaveric studies is that they can not replicate the contribution of surrounding neuromuscular structures to joint stability that occurs in the clinical setting. To address this, there have been in vivo studies that have examined the kinematics of the PCL deficient knee using imaging modalities whilst subjects perform dynamic manoeuvres. These studies demonstrate significant posterior subluxation of the medial tibia as the knee flexes. The results of these experimental studies are in line with clinical consequences of PCL deficiency. In particular, arthroscopic evaluation of subjects with isolated PCL injuries demonstrate an increased incidence of chondral lesions in the medial compartment. Yet despite the altered kinematics with PCL injury only a minority of patients require surgery for persistent instability and the majority of athletes are able to return to sport following a period of non-operative rehabilitation. Specifically, non-operative management centres on a programme of quadriceps strengthening and hamstring inhibition to minimise posterior tibial load. The mechanism behind the neuromuscular adaptation that allows the majority of athletes to return to sport has been investigated but not clearly elucidated. The purpose of this review paper is to draw together the findings of experimental studies on the anatomical and kinematic effects of PCL injury and summarise their relevance with respect to non-operative management and functional outcome in patients with isolated PCL deficiency",
keywords = "Knee, knee injury, posterior ligament biomechanics, knee anatomy",
author = "Sivashankar Chandrasekaran and David Ma and Jennie Scarvell and Kevin Woods and Paul Smith",
year = "2012",
doi = "10.1016/J.KNEE.2012.09.005",
language = "English",
volume = "19",
pages = "738--745",
journal = "The Knee",
issn = "0968-0160",
publisher = "Elsevier",
number = "6",

}

A review of the anatomical, biomechanical and kinematic findings of posterior cruiciate ligament injury with respect to non operative management. / Chandrasekaran, Sivashankar; Ma, David; Scarvell, Jennie; Woods, Kevin; Smith, Paul.

In: Knee, Vol. 19, No. 6, 2012, p. 738-745.

Research output: Contribution to journalArticle

TY - JOUR

T1 - A review of the anatomical, biomechanical and kinematic findings of posterior cruiciate ligament injury with respect to non operative management

AU - Chandrasekaran, Sivashankar

AU - Ma, David

AU - Scarvell, Jennie

AU - Woods, Kevin

AU - Smith, Paul

PY - 2012

Y1 - 2012

N2 - An understanding of the kinematics of posterior cruciate ligament (PCL) deficiency is important for the diagnosis and management of patients with isolated PCL injury. The kinematics of PCL injury has been analysed through cadaveric and in vivo imaging studies. Cadaveric studies have detailed the anatomy of the PCL. It consists of two functional bundles, anterolateral and posteromedial, which exhibit different tensioning patterns through the arc of knee flexion. Isolated sectioning of the PCL and its related structures in cadaveric specimens has defined its primary and secondary restraining functions. The PCL is the primary restraint to posterior tibia translation above 30° and is a secondary restraint below 30° of knee flexion. Furthermore, sectioning of the PCL produces increased chondral deformation forces in the medial compartment as the knee flexes. However, the drawback of cadaveric studies is that they can not replicate the contribution of surrounding neuromuscular structures to joint stability that occurs in the clinical setting. To address this, there have been in vivo studies that have examined the kinematics of the PCL deficient knee using imaging modalities whilst subjects perform dynamic manoeuvres. These studies demonstrate significant posterior subluxation of the medial tibia as the knee flexes. The results of these experimental studies are in line with clinical consequences of PCL deficiency. In particular, arthroscopic evaluation of subjects with isolated PCL injuries demonstrate an increased incidence of chondral lesions in the medial compartment. Yet despite the altered kinematics with PCL injury only a minority of patients require surgery for persistent instability and the majority of athletes are able to return to sport following a period of non-operative rehabilitation. Specifically, non-operative management centres on a programme of quadriceps strengthening and hamstring inhibition to minimise posterior tibial load. The mechanism behind the neuromuscular adaptation that allows the majority of athletes to return to sport has been investigated but not clearly elucidated. The purpose of this review paper is to draw together the findings of experimental studies on the anatomical and kinematic effects of PCL injury and summarise their relevance with respect to non-operative management and functional outcome in patients with isolated PCL deficiency

AB - An understanding of the kinematics of posterior cruciate ligament (PCL) deficiency is important for the diagnosis and management of patients with isolated PCL injury. The kinematics of PCL injury has been analysed through cadaveric and in vivo imaging studies. Cadaveric studies have detailed the anatomy of the PCL. It consists of two functional bundles, anterolateral and posteromedial, which exhibit different tensioning patterns through the arc of knee flexion. Isolated sectioning of the PCL and its related structures in cadaveric specimens has defined its primary and secondary restraining functions. The PCL is the primary restraint to posterior tibia translation above 30° and is a secondary restraint below 30° of knee flexion. Furthermore, sectioning of the PCL produces increased chondral deformation forces in the medial compartment as the knee flexes. However, the drawback of cadaveric studies is that they can not replicate the contribution of surrounding neuromuscular structures to joint stability that occurs in the clinical setting. To address this, there have been in vivo studies that have examined the kinematics of the PCL deficient knee using imaging modalities whilst subjects perform dynamic manoeuvres. These studies demonstrate significant posterior subluxation of the medial tibia as the knee flexes. The results of these experimental studies are in line with clinical consequences of PCL deficiency. In particular, arthroscopic evaluation of subjects with isolated PCL injuries demonstrate an increased incidence of chondral lesions in the medial compartment. Yet despite the altered kinematics with PCL injury only a minority of patients require surgery for persistent instability and the majority of athletes are able to return to sport following a period of non-operative rehabilitation. Specifically, non-operative management centres on a programme of quadriceps strengthening and hamstring inhibition to minimise posterior tibial load. The mechanism behind the neuromuscular adaptation that allows the majority of athletes to return to sport has been investigated but not clearly elucidated. The purpose of this review paper is to draw together the findings of experimental studies on the anatomical and kinematic effects of PCL injury and summarise their relevance with respect to non-operative management and functional outcome in patients with isolated PCL deficiency

KW - Knee

KW - knee injury

KW - posterior ligament biomechanics

KW - knee anatomy

U2 - 10.1016/J.KNEE.2012.09.005

DO - 10.1016/J.KNEE.2012.09.005

M3 - Article

VL - 19

SP - 738

EP - 745

JO - The Knee

JF - The Knee

SN - 0968-0160

IS - 6

ER -