A review of the science and logic associated with approach used in the universal soil loss equation family of models

P. I.A. Kinnell

Research output: Contribution to journalReview articlepeer-review

12 Citations (Scopus)
41 Downloads (Pure)


Soil erosion caused by rain is a major factor in degrading agricultural land, and agricultural practices that conserve soil should be used to maintain the long-term sustainability of agricultural land. The Universal Soil Loss Equation (USLE) was developed in the 1960s and 1970s to predict the long-term average annual soil loss from sheet and rill erosion on field-sized areas as an aid to making management decisions to conserve soil. The USLE uses six factors to take account of the effects of climate, soil, topography, crops, and crop management, and specific actions designed to conserve soil. Although initially developed as an empirical model based on data from more than 10,000 plot years of data collected in plot experiments in the USA, the selection of the independent factors used in the model was made taking account of scientific understanding of the drivers involved in rainfall erosion. In addition, assumptions and approximations were needed to make an operational model that met the needs of the decision makers at that time. Those needs have changed over time, leading to the development of the Revised USLE (RUSLE) and a second version of that, the Revised USLE, Version 2 (RUSLE2). While the original USLE model was not designed to predict short-term variations in erosion well, these developments have involved more use of conceptualization in order to deal with the time-variant impacts of the drivers involved in rainfall erosion. The USLE family of models is based on the concept that the “unit” plot, a bare fallow area 22.1 m long on a 9% slope gradient with cultivation up and down the slope, provides a physical situation where the effect of climate and soil on rainfall erosion can be determined without the need to consider the impact of the four other factors. The science and logic associated with this approach is reviewed. The manner by which the soil erodibility factor is determined from plot data ensures that the long-term average annual soil loss for the unit plot is predicted well, even when the assumption that event soil loss is directly related to the product of event rainfall energy, and the maximum 30-min intensity is not wholly appropriate. RUSLE2 has a capacity to use CLIGEN, the weather generator used in WEPP, and so can predict soil losses based on individual storms in a similar way to WEPP. Including a direct consideration of runoff in determining event erosivity enhances the ability to predict event soil losses when runoff is known or predicted well, but similar to more process-based models, this ability is offset by the difficulty in predicting runoff well.

Original languageEnglish
Article number62
Pages (from-to)1-33
Number of pages33
JournalSoil Systems
Issue number4
Publication statusPublished - Dec 2019


Dive into the research topics of 'A review of the science and logic associated with approach used in the universal soil loss equation family of models'. Together they form a unique fingerprint.

Cite this