TY - JOUR
T1 - A robust interpolation-based method for forensic soil provenancing
T2 - A Bayesian likelihood ratio approach
AU - Aberle, Michael G.
AU - de Caritat, Patrice
AU - Robertson, James
AU - Hoogewerff, Jurian A.
N1 - Funding Information:
Michael Aberle was generously supported in part by a PhD Research Training Program stipend funded by the Australian Government at the University of Canberra . Analytical costs were supported by Geoscience Australia through Australian Government appropriation and Exploring for the Future program funding. The funding sources had no involvement in the study design, sample/data collection, investigation, formal analysis or writing of this contribution.
Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/12
Y1 - 2023/12
N2 - Soil is a complex and spatially variable material that has a demonstrated potential as a useful evidence class in forensic casework and intelligence operations. Here, the capability to spatially constrain police search areas and prioritise resources by triaging areas as low and high interest is advantageous. Conducted between 2017 and 2021, a forensically relevant topsoil survey (0–5 cm depth; 1 sample per 1 km2) was carried out over Canberra, Australia, aiming to document the distribution of chemical elements in an urban/suburban environment, and of acting as a testbed for investigating various aspects of forensic soil provenancing. Geochemical data from X-Ray Fluorescence (XRF; for total major oxides) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; for trace elements) following a total digestion (HF + HNO3) of the fused XRF beads were obtained from the survey's 685 topsoil samples (plus 138 additional quality control samples and six “Blind” simulated evidentiary samples). Using those “Blind” samples, we document a likelihood ratio approach where for each grid cell the analytical similarity between the grid cell and evidentiary sample is attributed from a measure of overlap between the two Cauchy distributions, including appropriate uncertainties. Unlike existing methods that base inclusion/exclusion on an arbitrary threshold (e.g., ± three standard deviations), our approach is free from strict binary or Boolean thresholds, providing an unconstrained gradual transition dictated by the analytical similarity. Using this provenancing model, we present and evaluate a new method for upscaling from a fine (25 m x 25 m) interpolated grid to a more appropriate coarser (500 m x 500 m) grid. In addition, an objective method using Random Match Probabilities for ranking individual variables to be used for provenancing prior to receiving evidentiary material was demonstrated. Our results show this collective procedure generates more consistent and robust provenance maps when applied to two different interpolation algorithms (e.g., inverse distance weighting, and natural neighbour), with different grid placements (e.g., grid shifts to the north or east) and by different theoretical users (e.g., different computer systems, or forensic geoscientists).
AB - Soil is a complex and spatially variable material that has a demonstrated potential as a useful evidence class in forensic casework and intelligence operations. Here, the capability to spatially constrain police search areas and prioritise resources by triaging areas as low and high interest is advantageous. Conducted between 2017 and 2021, a forensically relevant topsoil survey (0–5 cm depth; 1 sample per 1 km2) was carried out over Canberra, Australia, aiming to document the distribution of chemical elements in an urban/suburban environment, and of acting as a testbed for investigating various aspects of forensic soil provenancing. Geochemical data from X-Ray Fluorescence (XRF; for total major oxides) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; for trace elements) following a total digestion (HF + HNO3) of the fused XRF beads were obtained from the survey's 685 topsoil samples (plus 138 additional quality control samples and six “Blind” simulated evidentiary samples). Using those “Blind” samples, we document a likelihood ratio approach where for each grid cell the analytical similarity between the grid cell and evidentiary sample is attributed from a measure of overlap between the two Cauchy distributions, including appropriate uncertainties. Unlike existing methods that base inclusion/exclusion on an arbitrary threshold (e.g., ± three standard deviations), our approach is free from strict binary or Boolean thresholds, providing an unconstrained gradual transition dictated by the analytical similarity. Using this provenancing model, we present and evaluate a new method for upscaling from a fine (25 m x 25 m) interpolated grid to a more appropriate coarser (500 m x 500 m) grid. In addition, an objective method using Random Match Probabilities for ranking individual variables to be used for provenancing prior to receiving evidentiary material was demonstrated. Our results show this collective procedure generates more consistent and robust provenance maps when applied to two different interpolation algorithms (e.g., inverse distance weighting, and natural neighbour), with different grid placements (e.g., grid shifts to the north or east) and by different theoretical users (e.g., different computer systems, or forensic geoscientists).
KW - Forensic science
KW - Interpolation
KW - Likelihood Ratio
KW - Provenancing
KW - Similarity
KW - Soil forensics
UR - http://www.scopus.com/inward/record.url?scp=85177804431&partnerID=8YFLogxK
U2 - 10.1016/j.forsciint.2023.111883
DO - 10.1016/j.forsciint.2023.111883
M3 - Article
C2 - 37977061
AN - SCOPUS:85177804431
SN - 0379-0738
VL - 353
SP - 1
EP - 20
JO - Forensic Science International
JF - Forensic Science International
M1 - 111883
ER -