A simple and effective approach for tackling the permutation flow shop scheduling problem

Mohamed Abdel-Basset, Reda Mohamed, Mohamed Abouhawwash, Ripon K. Chakrabortty, Michael J. Ryan

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
39 Downloads (Pure)

Abstract

In this research, a new approach for tackling the permutation flow shop scheduling problem (PFSSP) is proposed. This algorithm is based on the steps of the elitism continuous genetic algorithm improved by two strategies and used the largest rank value (LRV) rule to transform the continuous values into discrete ones for enabling of solving the combinatorial PFSSP. The first strategy is combining the arithmetic crossover with the uniform crossover to give the algorithm a high capability on exploitation in addition to reducing stuck into local minima. The second one is re-initializing an individual selected randomly from the population to increase the exploration for avoiding stuck into local minima. Afterward, those two strategies are combined with the proposed algorithm to produce an improved one known as the improved efficient genetic algorithm (IEGA). To increase the exploitation capability of the IEGA, it is hybridized a local search strategy in a version abbreviated as HIEGA. HIEGA and IEGA are validated on three common benchmarks and compared with a number of well-known robust evolutionary and meta-heuristic algorithms to check their efficacy. The experimental results show that HIEGA and IEGA are competitive with others for the datasets incorporated in the comparison, such as Carlier, Reeves, and Heller.

Original languageEnglish
Article number270
Pages (from-to)1-23
Number of pages23
JournalMathematics
Volume9
Issue number3
DOIs
Publication statusPublished - 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'A simple and effective approach for tackling the permutation flow shop scheduling problem'. Together they form a unique fingerprint.

Cite this