A two-phase weighted collaborative representation for 3D partial face recognition with single sample

Yinjie Lei, Yulan Guo, Munawar Hayat, Mohammed Bennamoun, Xinzhi Zhou

Research output: Contribution to journalArticle

51 Citations (Scopus)
1 Downloads (Pure)

Abstract

3D face recognition with the availability of only partial data (missing parts, occlusions and data corruptions) and single training sample is a highly challenging task. This paper presents an efficient 3D face recognition approach to address this challenge. We represent a facial scan with a set of local Keypoint-based Multiple Triangle Statistics (KMTS), which is robust to partial facial data, large facial expressions and pose variations. To address the single sample problem, we then propose a Two-Phase Weighted Collaborative Representation Classification (TPWCRC) framework. A class-based probability estimation is first calculated based on the extracted local descriptors as a prior knowledge. The resulting class-based probability estimation is then incorporated into the proposed classification framework as a locality constraint to further enhance its discriminating power. Experimental results on six challenging 3D facial datasets show that the proposed KMTS–TPWCRC framework achieves promising results for human face recognition with missing parts, occlusions, data corruptions, expressions and pose variations
Original languageEnglish
Pages (from-to)218-237
Number of pages20
JournalPattern Recognition
Volume52
Issue number1
DOIs
Publication statusPublished - 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'A two-phase weighted collaborative representation for 3D partial face recognition with single sample'. Together they form a unique fingerprint.

  • Cite this