Agent-Oriented Novel Quantum Key Distribution Protocol for the Security in Wireless Networks

Xu Huang, Don Wijesekera, Dharmendra Sharma

Research output: A Conference proceeding or a Chapter in BookChapter

Abstract

Wireless security is becoming increasingly important as wireless applications and systems are widely adopted. Numerous organizations have already installed or are busy in installing “wireless local area networks” (WLANs). These networks, based on the IEEE 802.11 standard, are very easy to deploy and inexpensive. Wi-Fi allows LANs to be deployed without cabling for client devices, typically reducing the costs of network deployment and expansion. As of 2007 wireless network adapters are built into most modern laptops. The price of chipsets for Wi-Fi continues to drop, making it an economical networking option included in ever more devices. Wi-Fi has become widespread in corporate infrastructures, which also helps with the deployment of RFID technology that can piggyback on Wi-Fi. Wi- Fi is a global set of standards, unlike mobile telephones, any standard Wi-Fi device will work anywhere in the world. Other important trends in wireless adoptions are including the introduction of wireless email with devices such as the Blackberry and The Palm VII, rampant digital cell phone use, including the use of short message service (SMWS), and the advent of Bluetooth devices. But the risks associated with the adoption of wireless networking are only now coming to light. A number of impressive attacks are possible and have been heavily publicized, especially in the IEEE 802.11b area. As far as base technology is concerned, wireless security appears to be following the usual “penetrate and path” route. Early wireless security focused almost exclusively on cryptography and secure transmission-with unfortunate results thus far. Wired Equivalency Privacy (WEP) security, the cryptography built in to 802.11b, for example, is completely broken and offers very little real security. In fact, one might argue that using WEP is worse than using no cryptography at all, because it can lull users into a completely unfounded sense of security. For every time one introduces new technologies one can rest assured that exploits for it are soon to follow. So with this in mind it was no great surprise that 64 bit WEP was quickly found to be lacking in terms of its implementation. So the vendors upped the ante and came out with 128 bit WEP, and this in turn was also found to be lacking. Wi-Fi hacking has been around for some time now, and oddly enough has really received little press. Since 2001, 64 bit WEP has been breakable [Park, Don 2006]. That was also around the time that well known tools such as Airsnort gave the ability to break into wireless network to the masses. In fact we looked at some of the tools that exist today which will allow user to discover wireless access points (WAP). It is obviously to face the fact that wireless network have become very popular over the past few years for not only business, but also the home market. In all likelihood user’s neighbors are probably running a wireless router for their home computer network even though it is not using a wireless card. The wireless communication revolution has been bringing fundamental changes to data networking, telecommunication, and has been making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN's [IEEE Standard for Local Metropolitan area networks], wireless MAN’s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Original languageEnglish
Title of host publicationMultiagent Systems
EditorsSalman Ahmed, Mohd Noh Karsiti
Place of PublicationVienna, Austria
PublisherIn-Tech
Pages261-276
Number of pages16
Edition1
ISBN (Print)9783902613516
Publication statusPublished - 2009

Fingerprint Dive into the research topics of 'Agent-Oriented Novel Quantum Key Distribution Protocol for the Security in Wireless Networks'. Together they form a unique fingerprint.

  • Cite this