TY - JOUR
T1 - Ambient particulate matter and biomass burning
T2 - An ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand
AU - Mueller, W.
AU - Loh, M.
AU - Vardoulakis, S.
AU - Johnston, H. J.
AU - Steinle, S.
AU - Precha, N.
AU - Kliengchuay, W.
AU - Tantrakarnapa, K.
AU - Cherrie, J. W.
N1 - Funding Information:
This study was funded by the Medical Research Council (MRC) (MR/R006210/1) and the Thailand Research Fund (TRF) (RDG603009). The views expressed are those of the author(s) and not necessarily those of the MRC or TRF.*%blankline%*
Publisher Copyright:
© 2020 The Author(s).
PY - 2020/7/3
Y1 - 2020/7/3
N2 - Background: Exposure to particulate matter (PM) emitted from biomass burning is an increasing concern, particularly in Southeast Asia. It is not yet clear how the source of PM influences the risk of an adverse health outcome. The objective of this study was to quantify and compare health risks of PM from biomass burning and non-biomass burning sources in northern Thailand. Methods: We collected ambient air pollutant data (PM with a diameter of < 10 μm [PM10], PM2.5, Carbon Monoxide [CO], Ozone [O3], and Nitrogen Dioxide [NO2]) from ground-based monitors and daily outpatient hospital visits in Thailand during 2014-2017. Outpatient data included chronic lower respiratory disease (CLRD), ischaemic heart disease (IHD), and cerebrovascular disease (CBVD). We performed an ecological time series analysis to evaluate the association between daily air pollutants and outpatient visits. We used the 90th and 95th percentiles of PM10 concentrations to determine days of exposure to PM predominantly from biomass burning. Results: There was significant intra annual variation in PM10 levels, with the highest concentrations occurring during March, coinciding with peak biomass burning. Incidence Rate Ratios (IRRs) between daily PM10 and outpatient visits were elevated most on the same day as exposure for CLRD = 1.020 (95% CI: 1.012 to 1.028) and CBVD = 1.020 (95% CI: 1.004 to 1.035), with no association with IHD = 0.994 (95% CI: 0.974 to 1.014). Adjusting for CO tended to increase effect estimates. We did not find evidence of an exposure response relationship with levels of PM10 on days of biomass burning. Conclusions: We found same-day exposures of PM10 to be associated with certain respiratory and cardiovascular outpatient visits. We advise implementing measures to reduce population exposures to PM wherever possible, and to improve understanding of health effects associated with burning specific types of biomass in areas where such large-scale activities occur.
AB - Background: Exposure to particulate matter (PM) emitted from biomass burning is an increasing concern, particularly in Southeast Asia. It is not yet clear how the source of PM influences the risk of an adverse health outcome. The objective of this study was to quantify and compare health risks of PM from biomass burning and non-biomass burning sources in northern Thailand. Methods: We collected ambient air pollutant data (PM with a diameter of < 10 μm [PM10], PM2.5, Carbon Monoxide [CO], Ozone [O3], and Nitrogen Dioxide [NO2]) from ground-based monitors and daily outpatient hospital visits in Thailand during 2014-2017. Outpatient data included chronic lower respiratory disease (CLRD), ischaemic heart disease (IHD), and cerebrovascular disease (CBVD). We performed an ecological time series analysis to evaluate the association between daily air pollutants and outpatient visits. We used the 90th and 95th percentiles of PM10 concentrations to determine days of exposure to PM predominantly from biomass burning. Results: There was significant intra annual variation in PM10 levels, with the highest concentrations occurring during March, coinciding with peak biomass burning. Incidence Rate Ratios (IRRs) between daily PM10 and outpatient visits were elevated most on the same day as exposure for CLRD = 1.020 (95% CI: 1.012 to 1.028) and CBVD = 1.020 (95% CI: 1.004 to 1.035), with no association with IHD = 0.994 (95% CI: 0.974 to 1.014). Adjusting for CO tended to increase effect estimates. We did not find evidence of an exposure response relationship with levels of PM10 on days of biomass burning. Conclusions: We found same-day exposures of PM10 to be associated with certain respiratory and cardiovascular outpatient visits. We advise implementing measures to reduce population exposures to PM wherever possible, and to improve understanding of health effects associated with burning specific types of biomass in areas where such large-scale activities occur.
KW - Ambient air pollution
KW - Biomass burning
KW - Hospital visits
KW - Particulate matter
KW - Thailand
KW - Time series
UR - http://www.scopus.com/inward/record.url?scp=85087473864&partnerID=8YFLogxK
U2 - 10.1186/s12940-020-00629-3
DO - 10.1186/s12940-020-00629-3
M3 - Article
C2 - 32620124
AN - SCOPUS:85087473864
SN - 1476-069X
VL - 19
SP - 1
EP - 12
JO - Environmental Health: A Global Access Science Source
JF - Environmental Health: A Global Access Science Source
IS - 1
M1 - 77
ER -