An adaptive cuckoo search-based optimization model for addressing cyber-physical security problems

Mohamed Abdel-Basset, Reda Mohamed, Nazeeruddin Mohammad, Karam Sallam, Nour Moustafa

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
59 Downloads (Pure)


One of the key challenges in cyber-physical systems (CPS) is the dynamic fitting of data sources under multivariate or mixture distribution models to determine abnormalities. Equations of the models have been statistically characterized as nonlinear and non-Gaussian ones, where data have high variations between normal and suspicious data distributions. To address nonlinear equations of these distributions, a cuckoo search algorithm is employed. In this paper, the cuckoo search algorithm is effectively improved with a novel strategy, known as a convergence speed strategy, to accelerate the convergence speed in the direction of the optimal solution for achieving better outcomes in a small number of iterations when solving systems of nonlinear equations. The proposed algorithm is named an improved cuckoo search algorithm (ICSA), which accelerates the convergence speed by improving the fitness values of function evaluations compared to the existing algorithms. To assess the efficacy of ICSA, 34 common nonlinear equations that fit the nature of cybersecurity models are adopted to show if ICSA can reach better outcomes with high convergence speed or not. ICSA has been compared with several well-known, well-established optimization algorithms, such as the slime mould optimizer, salp swarm, cuckoo search, marine predators, bat, and flower pollination algorithms. Experimental outcomes have revealed that ICSA is superior to the other in terms of the convergence speed and final accuracy, and this makes a promising alternative to the existing algorithm.

Original languageEnglish
Article number1140
Pages (from-to)1-27
Number of pages27
Issue number10
Publication statusPublished - 18 May 2021
Externally publishedYes


Dive into the research topics of 'An adaptive cuckoo search-based optimization model for addressing cyber-physical security problems'. Together they form a unique fingerprint.

Cite this