Analyzing group-level emotion with global alignment kernel based approach

Xiaohua Huang, Abhinav Dhall, Roland Goecke, Matti K. Pietikainen, Guoying Zhao

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


From the perspective of social science, understanding group emotion has become increasingly important for teams to considerably accomplish organizational work. Currently, automatically analyzing the perceived affect of a group of people has been received increasingly interest in affective computing community. The variability in group size makes difficulty for group-level emotion recognition to straightforwardly measure the feature distance of two group-level images. To alleviate this problem, this paper aims to design a new method to effectively analyze the group behavior from a group-level image. Motivated by time-series kernel approaches explored in dynamic facial expression classification, this paper mainly concentrates on global alignment kernel and design support vector machine with the combined global alignment kernels (SVM-CGAK) to better recognize group-level emotion. Intensive experiments are conducted on three challenging group-level emotion databases. The experimental results demonstrate that the proposed approach achieves promising performance for group-level emotion recognition compared with the recent state-of-the-art methods.

Original languageEnglish
Pages (from-to)1-15
Number of pages15
JournalIEEE Transactions on Affective Computing
Publication statusPublished - 14 Nov 2019


Dive into the research topics of 'Analyzing group-level emotion with global alignment kernel based approach'. Together they form a unique fingerprint.

Cite this