TY - JOUR
T1 - Application and comparison of immobilized and coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases for the enantioselective separation of β-blockers enantiomers by liquid chromatography
AU - Ghanem, Ashraf
AU - Hoenen, Hubert
AU - Aboul-Enein, Hassan Y.
PY - 2006/1/15
Y1 - 2006/1/15
N2 - A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.
AB - A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.
KW - Amylose tris-(3,5-dimethylphenylcarbamate)
KW - Chiralpak IA
KW - Enantioseparation
KW - Kinetic resolution
KW - LC
UR - http://www.scopus.com/inward/record.url?scp=30144443257&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2005.04.050
DO - 10.1016/j.talanta.2005.04.050
M3 - Article
AN - SCOPUS:30144443257
SN - 0039-9140
VL - 68
SP - 602
EP - 609
JO - Talanta
JF - Talanta
IS - 3
ER -