@inproceedings{18da7cd9ec7e435cab984b47c39bcab0,
title = "Area coverage under low sensor density",
abstract = "This paper presents a solution to the problem of monitoring a region of interest (RoI) using a set of nodes that is not sufficient to achieve the required degree of monitoring coverage. In particular, sensing coverage of wireless sensor networks (WSNs) is a crucial issue in projects due to failure of sensors. This scenario of limited funding hinders the traditional method of using mobile robots to move around the RoI to collect readings. Instead, our solution employs supervised neural networks to produce the values of the uncovered locations by extracting the non-linear relation among randomly deployed sensor nodes throughout the area. Moreover, we apply a hybrid backpropagation method to accelerate the learning convergence speed to a local minimum solution. We use a real-world data set from meteorological deployment for experimental validation and analysis.",
keywords = "Area coverage, Supervised neural networks, Wireless sensor networks",
author = "Alsheikh, {Mohammad Abu} and Shaowei Lin and Tan, {Hwee Pink} and Dusit Niyato",
year = "2014",
month = dec,
day = "16",
doi = "10.1109/SAHCN.2014.6990347",
language = "English",
isbn = "9781479946570",
series = "2014 11th Annual IEEE International Conference on Sensing, Communication, and Networking, SECON 2014",
publisher = "IEEE, Institute of Electrical and Electronics Engineers",
pages = "173--175",
editor = "{Tham }, Chen-Khong",
booktitle = "2014 11th Annual IEEE International Conference on Sensing, Communication, and Networking, SECON 2014",
address = "United States",
note = "2014 11th Annual IEEE International Conference on Sensing, Communication, and Networking, SECON 2014 ; Conference date: 30-06-2014 Through 03-07-2014",
}