Arsenic and antimony species in surface transects and depth profiles across a frontal zone: the Chatham Rise, New Zealand

Michael Ellwood, William Maher

    Research output: Contribution to journalArticle

    29 Citations (Scopus)

    Abstract

    Measurements of total dissolved arsenic (As(III+V)) and antimony (Sb(III+V) and their simple methylated species are presented for samples collected from three vertical profiles and along three surface transects in the Chatham Rise region, east of New Zealand. As(III+V) concentrations showed a slight increase with depth (16–17 nM at 25 m to 20 nM at 100 m) whereas Sb(III+V) concentrations were conservative with depth (1.02–1.12 nM). Along the three surface water transects, As(III+V) and Sb(III+V) concentrations showed little variation, with average concentrations of 18±2 and 0.99±0.05 nM, respectively. Inorganic arsenic was not correlated with orthophosphate (r2=0.01). Monomethyl- and dimethyl-arsenic (MMAs, DMAs) concentrations (0.04–0.01 and 0.65–0.07 nM, respectively) decreased with depth, suggesting surface water production by biota and degradation at depth. Along the Chatham Rise transect, DMAs concentrations increased on the Rise (0.65 nM maximum) compared to waters north and south of the Rise (∼0.22 nM). Fluctuation in MMAs concentrations were also seen for water samples collected on the Chatham Rise. Monomethyl-, dimethyl- and trimethyl-antimony (MMSb, DMSb, TMSb) species were detected in water samples collected along all the three surface water transects suggesting surface water production by biota. Concentrations of MMSb, DMSb and TMSb in water samples were fairly constant along all the three surface transects (0.06–0.07, 0.015–0.025 and 0.005–0.015 nM, respectively), showing no significant enrichment on the Chatham Rise. These arsenic and antimony results support the current global view that inorganic As and Sb are conservative and the methyl species are of biological origin
    Original languageEnglish
    Pages (from-to)1971-1981
    Number of pages11
    JournalDeep-Sea Research Part 1: Oceanographic Research Papers
    Volume49
    Issue number11
    DOIs
    Publication statusPublished - 2003

    Fingerprint

    antimony
    arsenic
    surface water
    transect
    biota
    sampling
    water
    orthophosphates
    organisms
    orthophosphate
    vertical profile
    degradation

    Cite this

    @article{e48b7cb3cbd7429ba7eb459c80d95a0f,
    title = "Arsenic and antimony species in surface transects and depth profiles across a frontal zone: the Chatham Rise, New Zealand",
    abstract = "Measurements of total dissolved arsenic (As(III+V)) and antimony (Sb(III+V) and their simple methylated species are presented for samples collected from three vertical profiles and along three surface transects in the Chatham Rise region, east of New Zealand. As(III+V) concentrations showed a slight increase with depth (16–17 nM at 25 m to 20 nM at 100 m) whereas Sb(III+V) concentrations were conservative with depth (1.02–1.12 nM). Along the three surface water transects, As(III+V) and Sb(III+V) concentrations showed little variation, with average concentrations of 18±2 and 0.99±0.05 nM, respectively. Inorganic arsenic was not correlated with orthophosphate (r2=0.01). Monomethyl- and dimethyl-arsenic (MMAs, DMAs) concentrations (0.04–0.01 and 0.65–0.07 nM, respectively) decreased with depth, suggesting surface water production by biota and degradation at depth. Along the Chatham Rise transect, DMAs concentrations increased on the Rise (0.65 nM maximum) compared to waters north and south of the Rise (∼0.22 nM). Fluctuation in MMAs concentrations were also seen for water samples collected on the Chatham Rise. Monomethyl-, dimethyl- and trimethyl-antimony (MMSb, DMSb, TMSb) species were detected in water samples collected along all the three surface water transects suggesting surface water production by biota. Concentrations of MMSb, DMSb and TMSb in water samples were fairly constant along all the three surface transects (0.06–0.07, 0.015–0.025 and 0.005–0.015 nM, respectively), showing no significant enrichment on the Chatham Rise. These arsenic and antimony results support the current global view that inorganic As and Sb are conservative and the methyl species are of biological origin",
    author = "Michael Ellwood and William Maher",
    year = "2003",
    doi = "10.1016/S0967-0637(02)00115-2",
    language = "English",
    volume = "49",
    pages = "1971--1981",
    journal = "Deep-Sea Research Part I: Oceanographic Research Papers",
    issn = "0967-0637",
    publisher = "Elsevier Limited",
    number = "11",

    }

    TY - JOUR

    T1 - Arsenic and antimony species in surface transects and depth profiles across a frontal zone: the Chatham Rise, New Zealand

    AU - Ellwood, Michael

    AU - Maher, William

    PY - 2003

    Y1 - 2003

    N2 - Measurements of total dissolved arsenic (As(III+V)) and antimony (Sb(III+V) and their simple methylated species are presented for samples collected from three vertical profiles and along three surface transects in the Chatham Rise region, east of New Zealand. As(III+V) concentrations showed a slight increase with depth (16–17 nM at 25 m to 20 nM at 100 m) whereas Sb(III+V) concentrations were conservative with depth (1.02–1.12 nM). Along the three surface water transects, As(III+V) and Sb(III+V) concentrations showed little variation, with average concentrations of 18±2 and 0.99±0.05 nM, respectively. Inorganic arsenic was not correlated with orthophosphate (r2=0.01). Monomethyl- and dimethyl-arsenic (MMAs, DMAs) concentrations (0.04–0.01 and 0.65–0.07 nM, respectively) decreased with depth, suggesting surface water production by biota and degradation at depth. Along the Chatham Rise transect, DMAs concentrations increased on the Rise (0.65 nM maximum) compared to waters north and south of the Rise (∼0.22 nM). Fluctuation in MMAs concentrations were also seen for water samples collected on the Chatham Rise. Monomethyl-, dimethyl- and trimethyl-antimony (MMSb, DMSb, TMSb) species were detected in water samples collected along all the three surface water transects suggesting surface water production by biota. Concentrations of MMSb, DMSb and TMSb in water samples were fairly constant along all the three surface transects (0.06–0.07, 0.015–0.025 and 0.005–0.015 nM, respectively), showing no significant enrichment on the Chatham Rise. These arsenic and antimony results support the current global view that inorganic As and Sb are conservative and the methyl species are of biological origin

    AB - Measurements of total dissolved arsenic (As(III+V)) and antimony (Sb(III+V) and their simple methylated species are presented for samples collected from three vertical profiles and along three surface transects in the Chatham Rise region, east of New Zealand. As(III+V) concentrations showed a slight increase with depth (16–17 nM at 25 m to 20 nM at 100 m) whereas Sb(III+V) concentrations were conservative with depth (1.02–1.12 nM). Along the three surface water transects, As(III+V) and Sb(III+V) concentrations showed little variation, with average concentrations of 18±2 and 0.99±0.05 nM, respectively. Inorganic arsenic was not correlated with orthophosphate (r2=0.01). Monomethyl- and dimethyl-arsenic (MMAs, DMAs) concentrations (0.04–0.01 and 0.65–0.07 nM, respectively) decreased with depth, suggesting surface water production by biota and degradation at depth. Along the Chatham Rise transect, DMAs concentrations increased on the Rise (0.65 nM maximum) compared to waters north and south of the Rise (∼0.22 nM). Fluctuation in MMAs concentrations were also seen for water samples collected on the Chatham Rise. Monomethyl-, dimethyl- and trimethyl-antimony (MMSb, DMSb, TMSb) species were detected in water samples collected along all the three surface water transects suggesting surface water production by biota. Concentrations of MMSb, DMSb and TMSb in water samples were fairly constant along all the three surface transects (0.06–0.07, 0.015–0.025 and 0.005–0.015 nM, respectively), showing no significant enrichment on the Chatham Rise. These arsenic and antimony results support the current global view that inorganic As and Sb are conservative and the methyl species are of biological origin

    U2 - 10.1016/S0967-0637(02)00115-2

    DO - 10.1016/S0967-0637(02)00115-2

    M3 - Article

    VL - 49

    SP - 1971

    EP - 1981

    JO - Deep-Sea Research Part I: Oceanographic Research Papers

    JF - Deep-Sea Research Part I: Oceanographic Research Papers

    SN - 0967-0637

    IS - 11

    ER -