Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism

M. Casado-Martinez, B. D. Smith, William Maher, P. Rainbow

    Research output: Contribution to journalArticle

    24 Citations (Scopus)

    Abstract

    The accumulation, subcellular distribution and speciation of arsenic in the polychaete Arenicola marina were investigated under different laboratory exposure conditions representing a range of metal bioavailabilities, to gain an insight into the physiological mechanisms of how A. marina handles bioaccumulated arsenic and to improve our understanding of the potential ecotoxicological significance of bioaccumulated arsenic in this deposit-feeder. The exposure conditions included exposure to sublethal concentrations of dissolved arsenate, exposure to sublethal concentrations of sediment-bound metal mining mixtures, and exposure to lethal concentrations of sediment-bound metal mining mixtures and arsenic- and multiple metal-spiked sediments. The sub-lethal exposures indicate that arsenic bioaccumulated by the deposit-feeding polychaete A. marina is stored in the cytosol as heat stable proteins (~50%) including metallothioneins, possibly as As (III)-thiol complexes. The remaining arsenic is mainly accumulated in the fraction containing cellular debris (~20%), with decreasing proportions accumulated in the metal-rich granules, organelles and heat-sensitive proteins fractions. A biological detoxified metal compartment including heat stable proteins and the fraction containing metal-rich granules is capable of binding arsenic coming into the cells at a constant rate under sublethal arsenic bioavailabilities. The remaining arsenic entering the cell is bound loosely into the cellular debris fraction, which can be subsequently released and diverted to an expanding detoxified pool. Our results suggest that a metal sensitive compartment comprising the cellular debris, enzymes and organelles fractions may be more representative of the toxic effects observed.
    Original languageEnglish
    Pages (from-to)576-590
    Number of pages15
    JournalEcotoxicology
    Volume21
    DOIs
    Publication statusPublished - 2012

    Fingerprint Dive into the research topics of 'Arsenic toxicity in a sediment-dwelling polychaete: detoxification and arsenic metabolism'. Together they form a unique fingerprint.

  • Cite this