TY - JOUR
T1 - Ascent and descent rates of high-flying insect migrants determined with a non-coherent vertical-beam entomological radar
AU - Drake, V. Alistair
AU - Wang, Haikou
N1 - Funding Information:
IMRU development has been supported by UNSW Canberra technical and engineering staff, especially Shane Hatty (data acquisition and control) and Colin Symons (linear video amplifier). The Australian Plague Locust Commission supported the installation of the IMRU at Hay and its subsequent operation. The IMRU is accommodated on the Hay Field Station of UNSW Sydney.
Publisher Copyright:
© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - Vertical-beam radars employing non-coherent transmission and reception provide an effective means of detecting insects migrating at heights of hundreds of metres. Current units can determine the insects' horizontal velocities, orientations, and some characteristics indicative of the targets' identities; however, they are not able to detect the vertical component of the targets' motion. It has generally been presumed that more sophisticated radar technology, employing Doppler processing and requiring coherent operation, would be needed to observe ascent and descent of targets, but we show here that with modern, high-speed, data-acquisition technology it is possible to determine these quantities from the echo signals produced by current non-coherent transceivers. A specially developed data-analysis algorithm that extracts precise target ranges from each of the radar's pulses and calculates averages over multiple samples forms an essential component of this new capability. An upgraded Insect Monitoring Radar ('IMRU') incorporating these elements can estimate target heights with a precision of 0.13 m up to heights of 1 km (and 0.2 m from 1 to 2.5 km), and it does so every 0.13 s. This allows ascent and descent rates to be estimated to a precision of 0.4 m s(-1) at lower altitudes and to 0.1 m s(-1) at the greatest heights, where the broader beam produces echoes with longer duration. Brief case studies are presented that show IMRU observations of ascending and descending insects in daytime convective thermals, around dusk (when nocturnal migration commences with a take-off flight), during an established nocturnal migration, and at the leading edge of a mesofront. Some limitations and potential biases of the method are identified, and its utility relative to alternative methods is considered.
AB - Vertical-beam radars employing non-coherent transmission and reception provide an effective means of detecting insects migrating at heights of hundreds of metres. Current units can determine the insects' horizontal velocities, orientations, and some characteristics indicative of the targets' identities; however, they are not able to detect the vertical component of the targets' motion. It has generally been presumed that more sophisticated radar technology, employing Doppler processing and requiring coherent operation, would be needed to observe ascent and descent of targets, but we show here that with modern, high-speed, data-acquisition technology it is possible to determine these quantities from the echo signals produced by current non-coherent transceivers. A specially developed data-analysis algorithm that extracts precise target ranges from each of the radar's pulses and calculates averages over multiple samples forms an essential component of this new capability. An upgraded Insect Monitoring Radar ('IMRU') incorporating these elements can estimate target heights with a precision of 0.13 m up to heights of 1 km (and 0.2 m from 1 to 2.5 km), and it does so every 0.13 s. This allows ascent and descent rates to be estimated to a precision of 0.4 m s(-1) at lower altitudes and to 0.1 m s(-1) at the greatest heights, where the broader beam produces echoes with longer duration. Brief case studies are presented that show IMRU observations of ascending and descending insects in daytime convective thermals, around dusk (when nocturnal migration commences with a take-off flight), during an established nocturnal migration, and at the leading edge of a mesofront. Some limitations and potential biases of the method are identified, and its utility relative to alternative methods is considered.
UR - http://www.scopus.com/inward/record.url?scp=85054808207&partnerID=8YFLogxK
U2 - 10.1080/01431161.2018.1519283
DO - 10.1080/01431161.2018.1519283
M3 - Article
SN - 0143-1161
VL - 40
SP - 883
EP - 904
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
IS - 3
ER -