Associations between flavonoid intakes and gut microbiota in a group of adults with cystic fibrosis

Research output: Contribution to journalArticle

2 Citations (Scopus)
1 Downloads (Pure)

Abstract

Dietary flavonoid intakes can influence gut microbiota (GM), which in turn can affect immune function and host metabolism, both vital considerations in cystic fibrosis (CF) management. In CF, GM may be altered and link to CF respiratory events. This study explored the relationship between flavonoid intakes and GM in free-living adults with CF. Associations between the overall GM variations (unweighted and weighted UniFrac distances between pyrosequencing results of bacterial 16-ss rDNA from frozen faecal samples of sixteen CF adults) and standardised dietary flavonoid intakes (a validated flavonoid-specific food frequency questionnaire) were analysed using adonis tests. Flavonoid intakes that were significant at a false discovery rate (FDR) < 0.3 were subjected to Spearman correlation tests with standardised bacterial relative abundances (FDR < 0.3). Gallocatechin intakes (p = 0.047, q = 0.285) were associated with unweighted UniFrac distances. Intakes of apigenin (p = 0.028, q = 0.227) and kaempferol (p = 0.029, q = 0.227), and % flavonoid intake as flavones (p = 0.013, q = 0.227) and flavonols (p = 0.016, q = 0.227) (both excluding contribution of tea) were associated with weighted UniFrac distances. Among these, gallocatechin correlated with the genus Actinomyces and family Actinomycetaceae (Actinobacteria). Gallocatechin correlated negatively with class Coriobacteriia (Actinobacteria). Intakes of some flavonoids may be associated with GM variations with potential consequences for metabolism, immune function, and inflammation, which are important in CF lung disease and co-morbidity management.

Original languageEnglish
Article number1264
Pages (from-to)1-13
Number of pages13
JournalNutrients
Volume10
Issue number9
DOIs
Publication statusPublished - 7 Sep 2018

Fingerprint

cystic fibrosis
intestinal microorganisms
Flavonoids
Cystic Fibrosis
flavonoids
epigallocatechin
Actinobacteria
Actinomycetaceae
Adonis
Actinomyces
Flavones
Apigenin
Flavonols
metabolism
apigenin
food frequency questionnaires
Tea
kaempferol
flavones
Ribosomal DNA

Cite this

@article{3365fe3ec40344a4b157d9c1893863f6,
title = "Associations between flavonoid intakes and gut microbiota in a group of adults with cystic fibrosis",
abstract = "Dietary flavonoid intakes can influence gut microbiota (GM), which in turn can affect immune function and host metabolism, both vital considerations in cystic fibrosis (CF) management. In CF, GM may be altered and link to CF respiratory events. This study explored the relationship between flavonoid intakes and GM in free-living adults with CF. Associations between the overall GM variations (unweighted and weighted UniFrac distances between pyrosequencing results of bacterial 16-ss rDNA from frozen faecal samples of sixteen CF adults) and standardised dietary flavonoid intakes (a validated flavonoid-specific food frequency questionnaire) were analysed using adonis tests. Flavonoid intakes that were significant at a false discovery rate (FDR) < 0.3 were subjected to Spearman correlation tests with standardised bacterial relative abundances (FDR < 0.3). Gallocatechin intakes (p = 0.047, q = 0.285) were associated with unweighted UniFrac distances. Intakes of apigenin (p = 0.028, q = 0.227) and kaempferol (p = 0.029, q = 0.227), and {\%} flavonoid intake as flavones (p = 0.013, q = 0.227) and flavonols (p = 0.016, q = 0.227) (both excluding contribution of tea) were associated with weighted UniFrac distances. Among these, gallocatechin correlated with the genus Actinomyces and family Actinomycetaceae (Actinobacteria). Gallocatechin correlated negatively with class Coriobacteriia (Actinobacteria). Intakes of some flavonoids may be associated with GM variations with potential consequences for metabolism, immune function, and inflammation, which are important in CF lung disease and co-morbidity management.",
keywords = "Cystic fibrosis, Flavonoids, Gut microbiota, Inflammation",
author = "Li Li and Shawn Somerset",
year = "2018",
month = "9",
day = "7",
doi = "10.3390/nu10091264",
language = "English",
volume = "10",
pages = "1--13",
journal = "Nutrients",
issn = "2072-6643",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "9",

}

Associations between flavonoid intakes and gut microbiota in a group of adults with cystic fibrosis. / Li, Li; Somerset, Shawn.

In: Nutrients, Vol. 10, No. 9, 1264, 07.09.2018, p. 1-13.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Associations between flavonoid intakes and gut microbiota in a group of adults with cystic fibrosis

AU - Li, Li

AU - Somerset, Shawn

PY - 2018/9/7

Y1 - 2018/9/7

N2 - Dietary flavonoid intakes can influence gut microbiota (GM), which in turn can affect immune function and host metabolism, both vital considerations in cystic fibrosis (CF) management. In CF, GM may be altered and link to CF respiratory events. This study explored the relationship between flavonoid intakes and GM in free-living adults with CF. Associations between the overall GM variations (unweighted and weighted UniFrac distances between pyrosequencing results of bacterial 16-ss rDNA from frozen faecal samples of sixteen CF adults) and standardised dietary flavonoid intakes (a validated flavonoid-specific food frequency questionnaire) were analysed using adonis tests. Flavonoid intakes that were significant at a false discovery rate (FDR) < 0.3 were subjected to Spearman correlation tests with standardised bacterial relative abundances (FDR < 0.3). Gallocatechin intakes (p = 0.047, q = 0.285) were associated with unweighted UniFrac distances. Intakes of apigenin (p = 0.028, q = 0.227) and kaempferol (p = 0.029, q = 0.227), and % flavonoid intake as flavones (p = 0.013, q = 0.227) and flavonols (p = 0.016, q = 0.227) (both excluding contribution of tea) were associated with weighted UniFrac distances. Among these, gallocatechin correlated with the genus Actinomyces and family Actinomycetaceae (Actinobacteria). Gallocatechin correlated negatively with class Coriobacteriia (Actinobacteria). Intakes of some flavonoids may be associated with GM variations with potential consequences for metabolism, immune function, and inflammation, which are important in CF lung disease and co-morbidity management.

AB - Dietary flavonoid intakes can influence gut microbiota (GM), which in turn can affect immune function and host metabolism, both vital considerations in cystic fibrosis (CF) management. In CF, GM may be altered and link to CF respiratory events. This study explored the relationship between flavonoid intakes and GM in free-living adults with CF. Associations between the overall GM variations (unweighted and weighted UniFrac distances between pyrosequencing results of bacterial 16-ss rDNA from frozen faecal samples of sixteen CF adults) and standardised dietary flavonoid intakes (a validated flavonoid-specific food frequency questionnaire) were analysed using adonis tests. Flavonoid intakes that were significant at a false discovery rate (FDR) < 0.3 were subjected to Spearman correlation tests with standardised bacterial relative abundances (FDR < 0.3). Gallocatechin intakes (p = 0.047, q = 0.285) were associated with unweighted UniFrac distances. Intakes of apigenin (p = 0.028, q = 0.227) and kaempferol (p = 0.029, q = 0.227), and % flavonoid intake as flavones (p = 0.013, q = 0.227) and flavonols (p = 0.016, q = 0.227) (both excluding contribution of tea) were associated with weighted UniFrac distances. Among these, gallocatechin correlated with the genus Actinomyces and family Actinomycetaceae (Actinobacteria). Gallocatechin correlated negatively with class Coriobacteriia (Actinobacteria). Intakes of some flavonoids may be associated with GM variations with potential consequences for metabolism, immune function, and inflammation, which are important in CF lung disease and co-morbidity management.

KW - Cystic fibrosis

KW - Flavonoids

KW - Gut microbiota

KW - Inflammation

UR - http://www.scopus.com/inward/record.url?scp=85053086063&partnerID=8YFLogxK

U2 - 10.3390/nu10091264

DO - 10.3390/nu10091264

M3 - Article

VL - 10

SP - 1

EP - 13

JO - Nutrients

JF - Nutrients

SN - 2072-6643

IS - 9

M1 - 1264

ER -