@article{47a319ba10d64eaf98dadd34f1d3484f,
title = "Automatic Quality Assessment of Transperineal Ultrasound Images of the Male Pelvic Region, Using Deep Learning",
abstract = "Ultrasound guidance is not in widespread use in prostate cancer radiotherapy workflows. This can be partially attributed to the need for image interpretation by a trained operator during ultrasound image acquisition. In this work, a one-class regressor, based on DenseNet and Gaussian processes, was implemented to automatically assess the quality of transperineal ultrasound images of the male pelvic region. The implemented deep learning approach was tested on 300 transperineal ultrasound images and it achieved a scoring accuracy of 94%, a specificity of 95% and a sensitivity of 92% with respect to the majority vote of 3 experts, which was comparable with the results of these experts. This is the first step toward a fully automatic workflow, which could potentially remove the need for ultrasound image interpretation and make real-time volumetric organ tracking in the radiotherapy environment using ultrasound more appealing.",
keywords = "Deep learning, Image-guided radiotherapy, Prostate, Radiotherapy, Transperineal ultrasound imaging, Ultrasound",
author = "Camps, {S. M.} and T. Houben and G. Carneiro and C. Edwards and M. Antico and M. Dunnhofer and Martens, {E. G.H.J.} and Baeza, {J. A.} and Vanneste, {B. G.L.} and {van Limbergen}, {E. J.} and {de With}, {P. H.N.} and F. Verhaegen and D. Fontanarosa",
note = "Funding Information: The computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia. This research forms part of a project supported by an Australia-India strategic research fund (AISRF53820). G.C. acknowledges the support received by the Australian Research Council's Discovery Projects funding scheme (project DP180103232). Funding Information: The computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology , Brisbane, Australia. This research forms part of a project supported by an Australia-India strategic research fund ( AISRF53820 ). G.C. acknowledges the support received by the Australian Research Council's Discovery Projects funding scheme (project DP180103232 ). Publisher Copyright: {\textcopyright} 2019 World Federation for Ultrasound in Medicine & Biology",
year = "2020",
month = feb,
doi = "10.1016/j.ultrasmedbio.2019.10.027",
language = "English",
volume = "46",
pages = "445--454",
journal = "Ultrasound in Medicine and Biology",
issn = "0301-5629",
publisher = "Elsevier USA",
number = "2",
}