Bacillus species at the Canberra Airport: A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification

M. E. Gahan, S. Bowman, R. Chevalier, R. Rossi, M. Nelson, P. Roffey, B. Xu, D. Power, D. McNevin

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Anthrax, caused by the Gram-positive, spore forming bacterium Bacillus anthracis, is a disease with naturally occurring outbreaks in many parts of the world, primarily in domestic and wild herbivores. Due to the movement of people and stock, B. anthracis could, however, be at transportation hubs including airports. The continuous threat to national and international security from a biological agent release, or hoax attack, is a very real concern. Sensitive, robust and rapid (hours-day) methods to identify biological agents, including B. anthracis, and distinguish pathogenic from non-pathogenic species, is an essential cornerstone to national security. The aim of this project was to determine the presence of Bacillus species at the Canberra Airport using two massively parallel sequencing (MPS) approaches and compare with previous results using real-time polymerase chain reaction (qPCR). Samples were collected daily for seven days each month from August 2011–July 2012 targeting movement of people, luggage and freight into and out of the Canberra Airport. Extracted DNA was analysed using qPCR specific for B. anthracis. A subset of samples was analysed using two MPS approaches. Approach one, using the Ion PGM™ (Thermo Fisher Scientific; TFS) and an in-house assay, targeted the two B. anthracis virulence plasmids (cya and capB genes) and a single conserved region of the 16S rRNA gene. Approach two, using the Ion S5™ (TFS) and the commercial Ion 16S™ Metagenomics Kit (TFS), targeted multiple regions within the bacterial 16S rRNA gene. Overall there was consistency between the two MPS approaches and between MPS and qPCR, however, MPS was more sensitive, particularly for plasmid detection. Whilst the broad-range 16S genomic target(s) used in both MPS approaches in this study was able to generate a metagenomic fingerprint of the bacterial community at the Canberra Airport, it could not resolve Bacillus species beyond the level of the Bacillus cereus group. The inclusion of B. anthracis virulence plasmid targets in the in-house assay did allow for the potential presumptive identifications of pathogenic species. No plasmid targets were in the Ion 16S™ Metagenomics Kit. This study shows the choice of target(s) is key in MPS assay development and should be carefully considered to ensure the assay is fit for purpose, whether as an initial screening (presumptive) or a more specific (but not entirely confirmatory) test. Identification approaches may also benefit from a combination of MPS and qPCR as each has benefits and limitations.

LanguageEnglish
Pages169-178
Number of pages10
JournalForensic Science International
Volume295
DOIs
Publication statusPublished - Feb 2019

Fingerprint

Airports
High-Throughput Nucleotide Sequencing
Bacillus anthracis
Bacillus
Real-Time Polymerase Chain Reaction
Metagenomics
Plasmids
Security Measures
Ions
Biological Factors
rRNA Genes
Virulence
Anthrax
Herbivory
Bacillus cereus
Dermatoglyphics
Deception
Spores
Disease Outbreaks
Bacteria

Cite this

Gahan, M. E. ; Bowman, S. ; Chevalier, R. ; Rossi, R. ; Nelson, M. ; Roffey, P. ; Xu, B. ; Power, D. ; McNevin, D. / Bacillus species at the Canberra Airport : A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification. In: Forensic Science International. 2019 ; Vol. 295. pp. 169-178.
@article{e5464508c0cb4b0085aeae88833ec6e9,
title = "Bacillus species at the Canberra Airport: A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification",
abstract = "Anthrax, caused by the Gram-positive, spore forming bacterium Bacillus anthracis, is a disease with naturally occurring outbreaks in many parts of the world, primarily in domestic and wild herbivores. Due to the movement of people and stock, B. anthracis could, however, be at transportation hubs including airports. The continuous threat to national and international security from a biological agent release, or hoax attack, is a very real concern. Sensitive, robust and rapid (hours-day) methods to identify biological agents, including B. anthracis, and distinguish pathogenic from non-pathogenic species, is an essential cornerstone to national security. The aim of this project was to determine the presence of Bacillus species at the Canberra Airport using two massively parallel sequencing (MPS) approaches and compare with previous results using real-time polymerase chain reaction (qPCR). Samples were collected daily for seven days each month from August 2011–July 2012 targeting movement of people, luggage and freight into and out of the Canberra Airport. Extracted DNA was analysed using qPCR specific for B. anthracis. A subset of samples was analysed using two MPS approaches. Approach one, using the Ion PGM™ (Thermo Fisher Scientific; TFS) and an in-house assay, targeted the two B. anthracis virulence plasmids (cya and capB genes) and a single conserved region of the 16S rRNA gene. Approach two, using the Ion S5™ (TFS) and the commercial Ion 16S™ Metagenomics Kit (TFS), targeted multiple regions within the bacterial 16S rRNA gene. Overall there was consistency between the two MPS approaches and between MPS and qPCR, however, MPS was more sensitive, particularly for plasmid detection. Whilst the broad-range 16S genomic target(s) used in both MPS approaches in this study was able to generate a metagenomic fingerprint of the bacterial community at the Canberra Airport, it could not resolve Bacillus species beyond the level of the Bacillus cereus group. The inclusion of B. anthracis virulence plasmid targets in the in-house assay did allow for the potential presumptive identifications of pathogenic species. No plasmid targets were in the Ion 16S™ Metagenomics Kit. This study shows the choice of target(s) is key in MPS assay development and should be carefully considered to ensure the assay is fit for purpose, whether as an initial screening (presumptive) or a more specific (but not entirely confirmatory) test. Identification approaches may also benefit from a combination of MPS and qPCR as each has benefits and limitations.",
keywords = "Bacillus, Canberra Airport, Massively parallel sequencing, Real-time polymerase chain reaction",
author = "Gahan, {M. E.} and S. Bowman and R. Chevalier and R. Rossi and M. Nelson and P. Roffey and B. Xu and D. Power and D. McNevin",
year = "2019",
month = "2",
doi = "10.1016/j.forsciint.2018.12.011",
language = "English",
volume = "295",
pages = "169--178",
journal = "Forensic Science",
issn = "0379-0738",
publisher = "Elsevier Ireland Ltd",

}

Bacillus species at the Canberra Airport : A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification. / Gahan, M. E.; Bowman, S.; Chevalier, R.; Rossi, R.; Nelson, M.; Roffey, P.; Xu, B.; Power, D.; McNevin, D.

In: Forensic Science International, Vol. 295, 02.2019, p. 169-178.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Bacillus species at the Canberra Airport

T2 - Forensic Science

AU - Gahan, M. E.

AU - Bowman, S.

AU - Chevalier, R.

AU - Rossi, R.

AU - Nelson, M.

AU - Roffey, P.

AU - Xu, B.

AU - Power, D.

AU - McNevin, D.

PY - 2019/2

Y1 - 2019/2

N2 - Anthrax, caused by the Gram-positive, spore forming bacterium Bacillus anthracis, is a disease with naturally occurring outbreaks in many parts of the world, primarily in domestic and wild herbivores. Due to the movement of people and stock, B. anthracis could, however, be at transportation hubs including airports. The continuous threat to national and international security from a biological agent release, or hoax attack, is a very real concern. Sensitive, robust and rapid (hours-day) methods to identify biological agents, including B. anthracis, and distinguish pathogenic from non-pathogenic species, is an essential cornerstone to national security. The aim of this project was to determine the presence of Bacillus species at the Canberra Airport using two massively parallel sequencing (MPS) approaches and compare with previous results using real-time polymerase chain reaction (qPCR). Samples were collected daily for seven days each month from August 2011–July 2012 targeting movement of people, luggage and freight into and out of the Canberra Airport. Extracted DNA was analysed using qPCR specific for B. anthracis. A subset of samples was analysed using two MPS approaches. Approach one, using the Ion PGM™ (Thermo Fisher Scientific; TFS) and an in-house assay, targeted the two B. anthracis virulence plasmids (cya and capB genes) and a single conserved region of the 16S rRNA gene. Approach two, using the Ion S5™ (TFS) and the commercial Ion 16S™ Metagenomics Kit (TFS), targeted multiple regions within the bacterial 16S rRNA gene. Overall there was consistency between the two MPS approaches and between MPS and qPCR, however, MPS was more sensitive, particularly for plasmid detection. Whilst the broad-range 16S genomic target(s) used in both MPS approaches in this study was able to generate a metagenomic fingerprint of the bacterial community at the Canberra Airport, it could not resolve Bacillus species beyond the level of the Bacillus cereus group. The inclusion of B. anthracis virulence plasmid targets in the in-house assay did allow for the potential presumptive identifications of pathogenic species. No plasmid targets were in the Ion 16S™ Metagenomics Kit. This study shows the choice of target(s) is key in MPS assay development and should be carefully considered to ensure the assay is fit for purpose, whether as an initial screening (presumptive) or a more specific (but not entirely confirmatory) test. Identification approaches may also benefit from a combination of MPS and qPCR as each has benefits and limitations.

AB - Anthrax, caused by the Gram-positive, spore forming bacterium Bacillus anthracis, is a disease with naturally occurring outbreaks in many parts of the world, primarily in domestic and wild herbivores. Due to the movement of people and stock, B. anthracis could, however, be at transportation hubs including airports. The continuous threat to national and international security from a biological agent release, or hoax attack, is a very real concern. Sensitive, robust and rapid (hours-day) methods to identify biological agents, including B. anthracis, and distinguish pathogenic from non-pathogenic species, is an essential cornerstone to national security. The aim of this project was to determine the presence of Bacillus species at the Canberra Airport using two massively parallel sequencing (MPS) approaches and compare with previous results using real-time polymerase chain reaction (qPCR). Samples were collected daily for seven days each month from August 2011–July 2012 targeting movement of people, luggage and freight into and out of the Canberra Airport. Extracted DNA was analysed using qPCR specific for B. anthracis. A subset of samples was analysed using two MPS approaches. Approach one, using the Ion PGM™ (Thermo Fisher Scientific; TFS) and an in-house assay, targeted the two B. anthracis virulence plasmids (cya and capB genes) and a single conserved region of the 16S rRNA gene. Approach two, using the Ion S5™ (TFS) and the commercial Ion 16S™ Metagenomics Kit (TFS), targeted multiple regions within the bacterial 16S rRNA gene. Overall there was consistency between the two MPS approaches and between MPS and qPCR, however, MPS was more sensitive, particularly for plasmid detection. Whilst the broad-range 16S genomic target(s) used in both MPS approaches in this study was able to generate a metagenomic fingerprint of the bacterial community at the Canberra Airport, it could not resolve Bacillus species beyond the level of the Bacillus cereus group. The inclusion of B. anthracis virulence plasmid targets in the in-house assay did allow for the potential presumptive identifications of pathogenic species. No plasmid targets were in the Ion 16S™ Metagenomics Kit. This study shows the choice of target(s) is key in MPS assay development and should be carefully considered to ensure the assay is fit for purpose, whether as an initial screening (presumptive) or a more specific (but not entirely confirmatory) test. Identification approaches may also benefit from a combination of MPS and qPCR as each has benefits and limitations.

KW - Bacillus

KW - Canberra Airport

KW - Massively parallel sequencing

KW - Real-time polymerase chain reaction

UR - http://www.scopus.com/inward/record.url?scp=85059344325&partnerID=8YFLogxK

U2 - 10.1016/j.forsciint.2018.12.011

DO - 10.1016/j.forsciint.2018.12.011

M3 - Article

VL - 295

SP - 169

EP - 178

JO - Forensic Science

JF - Forensic Science

SN - 0379-0738

ER -