Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture

Anuja Arora, Ambikesh Jayal, Mayank Gupta, Prakhar Mittal, Suresh Chandra Satapathy

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
35 Downloads (Pure)

Abstract

Brain tumor segmentation seeks to separate healthy tissue from tumorous regions. This is an essential step in diagnosis and treatment planning to maximize the likelihood of successful treatment. Magnetic resonance imaging (MRI) provides detailed information about brain tumor anatomy, making it an important tool for effective diagnosis which is requisite to replace the existing manual detection system where patients rely on the skills and expertise of a human. In order to solve this problem, a brain tumor segmentation & detection system is proposed where experiments are tested on the collected BraTS 2018 dataset. This dataset contains four different MRI modalities for each patient as T1, T2, T1Gd, and FLAIR, and as an outcome, a segmented image and ground truth of tumor segmentation, i.e., class label, is provided. A fully automatic methodology to handle the task of segmentation of gliomas in pre-operative MRI scans is developed using a U-Net-based deep learning model. The first step is to transform input image data, which is further processed through various techniques—subset division, narrow object region, category brain slicing, watershed algorithm, and feature scaling was done. All these steps are implied before entering data into the U-Net Deep learning model. The U-Net Deep learning model is used to perform pixel label segmentation on the segment tumor region. The algorithm reached high-performance accuracy on the BraTS 2018 training, validation, as well as testing dataset. The proposed model achieved a dice coefficient of 0.9815, 0.9844, 0.9804, and 0.9954 on the testing dataset for sets HGG-1, HGG-2, HGG-3, and LGG-1, respectively.
Original languageEnglish
Article number139
Pages (from-to)1-17
Number of pages17
JournalCOMPUTERS
Volume10
Issue number11
DOIs
Publication statusPublished - Nov 2021

Fingerprint

Dive into the research topics of 'Brain Tumor Segmentation of MRI Images Using Processed Image Driven U-Net Architecture'. Together they form a unique fingerprint.

Cite this