Comparative genomics and phenotypic studies to determine site-specificity of Escherichia coli in the lower gastrointestinal tract of humans

Rasel Barua, Paul Pavli, David M Gordon, Claire L O'Brien

Research output: Contribution to journalArticlepeer-review

64 Downloads (Pure)

Abstract

Escherichia coli ( E. coli) is an important commensal in the human gut; however, it is unknown whether strains show site-specificity in the lower gut. To investigate this, we assessed genotypic and phenotypic differences in 37 clone pairs (two strains with very similar multiple locus variable-number-tandem-repeat analysis [MLVA] profiles) of E. coli isolated from mucosal biopsies of two different gut locations (terminal ileum and rectum). The clone pairs varied at the genomic level; single nucleotide polymorphisms (SNPs) were common, multiple nucleotide polymorphisms (MNPs) were observed but less common, and few indels (insertions and deletions) were detected. The variation was higher in clone pairs that are associated with non-human-associated sequence types (ST) compared to human-associated STs, such as ST95, ST131, and ST73. No gene(s) with non-synonymous mutations were found to be commonly associated with either the terminal ileum or the rectal strains. At the phenotypic level, we identified the metabolic signatures for some STs. Rectum strains of some STs showed consistently higher metabolic activity with particular carbon sources. Clone pairs belonging to specific STs showed distinct growth patterns under different pH conditions. Overall, this study showed that E. coli may exhibit genomic and phenotypic variability at different locations in the gut. Although genomics did not reveal significant information suggesting the site-specificity of strains, some phenotypic studies have suggested that strains may display site-specificity in the lower gut. These results provide insights into the nature and adaptation of E. coli in the lower gut of humans. To the best of our knowledge, no study has investigated or demonstrated the site-specificity of commensal E. coli in the human gut.

Original languageEnglish
Article number2223332
Pages (from-to)1-19
Number of pages19
JournalGut Microbes
Volume15
Issue number1
DOIs
Publication statusPublished - 22 Jun 2023

Fingerprint

Dive into the research topics of 'Comparative genomics and phenotypic studies to determine site-specificity of Escherichia coli in the lower gastrointestinal tract of humans'. Together they form a unique fingerprint.

Cite this