Comparative requirement for endogenous ethylene during seed germination

Sylvie Lalonde, Hargurdeep S. Saini

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Requirement for endogenous ethylene during seed germination of the following ten species was determined: Lycopersicon escuienlum Mill, (tomato), Allium cepa L. (onion), Avena fatua L., dormant pure line AN-51 (wild oats), Cucumis sativus L. (cucumber), Smapis arvensis L. (wild mustard), Tageles erectu L. (mangold), Raphanus sativus L. (radish), Tnlicum aeslivum L. (wheat), Catharanthus roseus L. (periwinkle), and Phaseolus aureus L (mung bean). Experiments were done under controlled conditions suited for the germination of each species. Criteria used to determine the need for endogenous ethylene were: (i) temporal relationship between ethylene production and seed germination; (ii) parallel inhibition of ethylene synthesis and seed germination by L-a-(2-aminoethoxyvinyl)-glycine or CoClj; (iii) inhibition of seed germination by 2,5-norbomadiene, a competitive inhibitor of ethylene action; and (iv) prevention by exogenous ethylene of the effects of each inhibitor on germination. All the species produced ethylene in amounts that increased concomitantly with germination. According to all the criteria used, ethylene synthesis and action were found to be necessary for the germination of T. erecta. Norbomadiene inhibited the germination of R. sativus, T. aestivum and C. roseus, and exogenous ethylene overcame this inhibition. However, inhibitors of ethylene synthesis generally did not affect the germination of these species. One exception was the inhibition of R. sativus germination by CoClj, but this was not overcome by exogenous ethylene, indicating that CoCl, did not act specifically by blocking ethylene synthesis. In all other species, ethylene produced by seeds appears to play no role in germination. The results show that there is no general requirement for endogenous ethylene during germination, even though all species studied so far produce ethylene. This requirement is also not linked specifically to dormancy breakage.

Original languageEnglish
Pages (from-to)423-428
Number of pages6
JournalAnnals of Botany
Volume69
Issue number5
DOIs
Publication statusPublished - 1 Jan 1992
Externally publishedYes

Fingerprint

ethylene
seed germination
germination
Raphanus sativus
ethylene inhibitors
synthesis
Catharanthus roseus
Vigna radiata var. radiata
Avena fatua
aminoethoxyvinylglycine
Allium cepa
Solanum
Cucumis sativus
radishes
mung beans
ethylene production
onions
dormancy
cucumbers
oats

Cite this

@article{b4fb0ce3c41c49bfba33e71fd312523f,
title = "Comparative requirement for endogenous ethylene during seed germination",
abstract = "Requirement for endogenous ethylene during seed germination of the following ten species was determined: Lycopersicon escuienlum Mill, (tomato), Allium cepa L. (onion), Avena fatua L., dormant pure line AN-51 (wild oats), Cucumis sativus L. (cucumber), Smapis arvensis L. (wild mustard), Tageles erectu L. (mangold), Raphanus sativus L. (radish), Tnlicum aeslivum L. (wheat), Catharanthus roseus L. (periwinkle), and Phaseolus aureus L (mung bean). Experiments were done under controlled conditions suited for the germination of each species. Criteria used to determine the need for endogenous ethylene were: (i) temporal relationship between ethylene production and seed germination; (ii) parallel inhibition of ethylene synthesis and seed germination by L-a-(2-aminoethoxyvinyl)-glycine or CoClj; (iii) inhibition of seed germination by 2,5-norbomadiene, a competitive inhibitor of ethylene action; and (iv) prevention by exogenous ethylene of the effects of each inhibitor on germination. All the species produced ethylene in amounts that increased concomitantly with germination. According to all the criteria used, ethylene synthesis and action were found to be necessary for the germination of T. erecta. Norbomadiene inhibited the germination of R. sativus, T. aestivum and C. roseus, and exogenous ethylene overcame this inhibition. However, inhibitors of ethylene synthesis generally did not affect the germination of these species. One exception was the inhibition of R. sativus germination by CoClj, but this was not overcome by exogenous ethylene, indicating that CoCl, did not act specifically by blocking ethylene synthesis. In all other species, ethylene produced by seeds appears to play no role in germination. The results show that there is no general requirement for endogenous ethylene during germination, even though all species studied so far produce ethylene. This requirement is also not linked specifically to dormancy breakage.",
keywords = "Ethylene action, Ethylene synthesis, Plant hormones, Seed dormancy, Seed germination",
author = "Sylvie Lalonde and Saini, {Hargurdeep S.}",
year = "1992",
month = "1",
day = "1",
doi = "10.1093/oxfordjournals.aob.a088363",
language = "English",
volume = "69",
pages = "423--428",
journal = "Annals of Botany",
issn = "0305-7364",
publisher = "Oxford University Press",
number = "5",

}

Comparative requirement for endogenous ethylene during seed germination. / Lalonde, Sylvie; Saini, Hargurdeep S.

In: Annals of Botany, Vol. 69, No. 5, 01.01.1992, p. 423-428.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Comparative requirement for endogenous ethylene during seed germination

AU - Lalonde, Sylvie

AU - Saini, Hargurdeep S.

PY - 1992/1/1

Y1 - 1992/1/1

N2 - Requirement for endogenous ethylene during seed germination of the following ten species was determined: Lycopersicon escuienlum Mill, (tomato), Allium cepa L. (onion), Avena fatua L., dormant pure line AN-51 (wild oats), Cucumis sativus L. (cucumber), Smapis arvensis L. (wild mustard), Tageles erectu L. (mangold), Raphanus sativus L. (radish), Tnlicum aeslivum L. (wheat), Catharanthus roseus L. (periwinkle), and Phaseolus aureus L (mung bean). Experiments were done under controlled conditions suited for the germination of each species. Criteria used to determine the need for endogenous ethylene were: (i) temporal relationship between ethylene production and seed germination; (ii) parallel inhibition of ethylene synthesis and seed germination by L-a-(2-aminoethoxyvinyl)-glycine or CoClj; (iii) inhibition of seed germination by 2,5-norbomadiene, a competitive inhibitor of ethylene action; and (iv) prevention by exogenous ethylene of the effects of each inhibitor on germination. All the species produced ethylene in amounts that increased concomitantly with germination. According to all the criteria used, ethylene synthesis and action were found to be necessary for the germination of T. erecta. Norbomadiene inhibited the germination of R. sativus, T. aestivum and C. roseus, and exogenous ethylene overcame this inhibition. However, inhibitors of ethylene synthesis generally did not affect the germination of these species. One exception was the inhibition of R. sativus germination by CoClj, but this was not overcome by exogenous ethylene, indicating that CoCl, did not act specifically by blocking ethylene synthesis. In all other species, ethylene produced by seeds appears to play no role in germination. The results show that there is no general requirement for endogenous ethylene during germination, even though all species studied so far produce ethylene. This requirement is also not linked specifically to dormancy breakage.

AB - Requirement for endogenous ethylene during seed germination of the following ten species was determined: Lycopersicon escuienlum Mill, (tomato), Allium cepa L. (onion), Avena fatua L., dormant pure line AN-51 (wild oats), Cucumis sativus L. (cucumber), Smapis arvensis L. (wild mustard), Tageles erectu L. (mangold), Raphanus sativus L. (radish), Tnlicum aeslivum L. (wheat), Catharanthus roseus L. (periwinkle), and Phaseolus aureus L (mung bean). Experiments were done under controlled conditions suited for the germination of each species. Criteria used to determine the need for endogenous ethylene were: (i) temporal relationship between ethylene production and seed germination; (ii) parallel inhibition of ethylene synthesis and seed germination by L-a-(2-aminoethoxyvinyl)-glycine or CoClj; (iii) inhibition of seed germination by 2,5-norbomadiene, a competitive inhibitor of ethylene action; and (iv) prevention by exogenous ethylene of the effects of each inhibitor on germination. All the species produced ethylene in amounts that increased concomitantly with germination. According to all the criteria used, ethylene synthesis and action were found to be necessary for the germination of T. erecta. Norbomadiene inhibited the germination of R. sativus, T. aestivum and C. roseus, and exogenous ethylene overcame this inhibition. However, inhibitors of ethylene synthesis generally did not affect the germination of these species. One exception was the inhibition of R. sativus germination by CoClj, but this was not overcome by exogenous ethylene, indicating that CoCl, did not act specifically by blocking ethylene synthesis. In all other species, ethylene produced by seeds appears to play no role in germination. The results show that there is no general requirement for endogenous ethylene during germination, even though all species studied so far produce ethylene. This requirement is also not linked specifically to dormancy breakage.

KW - Ethylene action

KW - Ethylene synthesis

KW - Plant hormones

KW - Seed dormancy

KW - Seed germination

UR - http://www.scopus.com/inward/record.url?scp=38249011867&partnerID=8YFLogxK

U2 - 10.1093/oxfordjournals.aob.a088363

DO - 10.1093/oxfordjournals.aob.a088363

M3 - Article

VL - 69

SP - 423

EP - 428

JO - Annals of Botany

JF - Annals of Botany

SN - 0305-7364

IS - 5

ER -