TY - JOUR
T1 - Contraceptive vaccines
AU - McLaughlin, Eileen A.
AU - Holland, Michael K.
AU - Aitken, R. J.
PY - 2003/8
Y1 - 2003/8
N2 - The control of human fertility would be revolutionised by the development of a safe, effective, long-acting contraceptive vaccine. The pursuit of this objective has involved the selection of appropriate targets within the reproductive process that are amenable to interference with antibodies. To date, three major targets have been researched. The zona pellucida (ZP) plays key roles in folliculogenesis, fertilisation and early development, and is comprised of powerful cell-specific antigens. The induction of infertility requires high ZP antibody titres that are difficult to maintain without inducing ovarian pathology characterised by a premature loss of primordial follicles. As a premature menopause would be a high price to pay for long-term contraception, this approach to a vaccine cannot progress until the cause of the ovarian pathology has been resolved. Sperm surface antigens represent another promising approach to contraceptive vaccine development. While there is some clinical data to support the likely efficacy of this strategy, none of the gamete-specific molecules characterised to date have fulfilled this promise. Anti-human chorionic gonadotropin (hCG) vaccines terminate pregnancy by preventing the maternal recognition of pregnancy. This vaccine has reached the stage of clinical trials, and preliminary indications are that the approach is safe and potentially effective. However, reliability may be an issue, given the observed inter-individual variability in antibody generation. The future of contraceptive vaccine development will clearly involve a continuation of the intense search for suitable targets and the development of improved immunisation procedures that exploit the latest innovations in vaccine technology.
AB - The control of human fertility would be revolutionised by the development of a safe, effective, long-acting contraceptive vaccine. The pursuit of this objective has involved the selection of appropriate targets within the reproductive process that are amenable to interference with antibodies. To date, three major targets have been researched. The zona pellucida (ZP) plays key roles in folliculogenesis, fertilisation and early development, and is comprised of powerful cell-specific antigens. The induction of infertility requires high ZP antibody titres that are difficult to maintain without inducing ovarian pathology characterised by a premature loss of primordial follicles. As a premature menopause would be a high price to pay for long-term contraception, this approach to a vaccine cannot progress until the cause of the ovarian pathology has been resolved. Sperm surface antigens represent another promising approach to contraceptive vaccine development. While there is some clinical data to support the likely efficacy of this strategy, none of the gamete-specific molecules characterised to date have fulfilled this promise. Anti-human chorionic gonadotropin (hCG) vaccines terminate pregnancy by preventing the maternal recognition of pregnancy. This vaccine has reached the stage of clinical trials, and preliminary indications are that the approach is safe and potentially effective. However, reliability may be an issue, given the observed inter-individual variability in antibody generation. The future of contraceptive vaccine development will clearly involve a continuation of the intense search for suitable targets and the development of improved immunisation procedures that exploit the latest innovations in vaccine technology.
KW - Contraception
KW - Human chorionic gonadotropin
KW - Oocytes
KW - Spermatozoa
KW - Zona pellucida
UR - http://www.scopus.com/inward/record.url?scp=0042671195&partnerID=8YFLogxK
U2 - 10.1517/14712598.3.5.829
DO - 10.1517/14712598.3.5.829
M3 - Review article
C2 - 12880382
AN - SCOPUS:0042671195
SN - 1471-2598
VL - 3
SP - 829
EP - 841
JO - Expert Opinion on Biological Therapy
JF - Expert Opinion on Biological Therapy
IS - 5
ER -