@inproceedings{37be36b7e0d943d0ba7c61d0a536d9f0,
title = "Correcting Pose Estimation with Implicit Occlusion Detection and Rectification",
abstract = "Recently, articulated pose estimation methods based on the pictorial structure framework have received much attention in computer vision. However, the performance of these approaches has been limited due to the presence of self-occlusion. This paper deals with the problem of handling self-occlusion in the pictorial structure framework. We propose an exemplar-based framework for implicit occlusion detection and rectification. Our framework can be applied as a general post-processing plug-in following any pose estimation approach to rectify errors due to self-occlusion and to improve the accuracy. The proposed framework outperforms a state-of-the-art pictorial structure approach for human pose estimation on the HumanEva dataset.",
keywords = "Human pose estimation, Occlusion detection",
author = "RADWAN, {Ibrahim Hamed Ismail} and Abhinav Dhall and Roland Goecke",
year = "2012",
language = "English",
isbn = "9781467322164",
series = "International Conference on Pattern Recognition",
publisher = "IEEE, Institute of Electrical and Electronics Engineers",
pages = "3496--3499",
booktitle = "The 2012 21th International Conference on Pattern Recognition (ICPR2012)",
address = "United States",
note = "21st International Conference on Pattern Recognition (ICPR 2012), ICPR 2012 ; Conference date: 11-11-2012 Through 15-11-2012",
}