TY - JOUR
T1 - Costs of Rearing the Wrong Sex
T2 - Cross-Fostering to Manipulate Offspring Sex in Tammar Wallabies
AU - Schwanz, Lisa
AU - Robert, Kylie A.
N1 - Funding Information:
This research was conducted in compliance with ethical standards in Australia, under the approval of the Department of Environment and Conservation Research (permits: SF007185 and SF007651). We thank J. Wann and T. Smith for assistance in accessing the animals and research facilities, B. Chambers and R. Bencini for advice on research design, logistics, loaned traps and lodging. Numerous field assistants helped with trapping. The research was funded by an U.S. National Science Foundation International Research Fellowship (LES), a University of Western Australia Postdoctoral Research Fellowship (KAR), University of Western Australia Research Grants Scheme (KAR), and the Australian Department of Defence (KAR and LES). The manuscript was improved by comments from A. Clark and M. Festa-Bianchet and several anonymous reviewers.
Publisher Copyright:
© 2016 Schwanz, Robert. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Sex allocation theory assumes that offspring sex (son vs. daughter) has consequences for maternal fitness. The most compelling experiment to test this theory would involve manipulating offspring sex and measuring the fitness consequences of having the "wrong" sex. Unfortunately, the logistical challenges of such an experiment limit its application. In tammar wallabies (Macropus eugenii), previous evidence suggests that mothers in good body condition are more likely to produce sons compared to mothers in poor condition, in support of the Trivers-Willard Hypothesis (TW) of condition-dependent sex allocation. More recently, we have found in our population of tammar wallabies that females with seemingly poor access to resources (based on condition loss over the dry summer) are more likely to produce sons, consistent with predictions from the Local Resource Competition (LRC) hypothesis, which proposes that production of sons or daughters is driven by the level of potential competition between mothers and philopatric daughters. We conducted a cross-fostering experiment in free-ranging tammar wallabies to disassociate the effects of rearing and birthing offspring of each sex. This allowed us to test the prediction of the LRC hypothesis that rearing daughters reduces the future direct fitness of mothers post-weaning and the prediction of the TW hypothesis that rearing sons requires more energy during lactation. Overall, we found limited costs to the mother of rearing the "wrong" sex, with switching of offspring sex only reducing the likelihood of a mother having a pouch young the following year. Thus, we found some support for both hypotheses in that rearing an unexpected son or an unexpected daughter both lead to reduced future maternal fitness. The study suggests that there may be context-specific costs associated with rearing the "wrong" sex.
AB - Sex allocation theory assumes that offspring sex (son vs. daughter) has consequences for maternal fitness. The most compelling experiment to test this theory would involve manipulating offspring sex and measuring the fitness consequences of having the "wrong" sex. Unfortunately, the logistical challenges of such an experiment limit its application. In tammar wallabies (Macropus eugenii), previous evidence suggests that mothers in good body condition are more likely to produce sons compared to mothers in poor condition, in support of the Trivers-Willard Hypothesis (TW) of condition-dependent sex allocation. More recently, we have found in our population of tammar wallabies that females with seemingly poor access to resources (based on condition loss over the dry summer) are more likely to produce sons, consistent with predictions from the Local Resource Competition (LRC) hypothesis, which proposes that production of sons or daughters is driven by the level of potential competition between mothers and philopatric daughters. We conducted a cross-fostering experiment in free-ranging tammar wallabies to disassociate the effects of rearing and birthing offspring of each sex. This allowed us to test the prediction of the LRC hypothesis that rearing daughters reduces the future direct fitness of mothers post-weaning and the prediction of the TW hypothesis that rearing sons requires more energy during lactation. Overall, we found limited costs to the mother of rearing the "wrong" sex, with switching of offspring sex only reducing the likelihood of a mother having a pouch young the following year. Thus, we found some support for both hypotheses in that rearing an unexpected son or an unexpected daughter both lead to reduced future maternal fitness. The study suggests that there may be context-specific costs associated with rearing the "wrong" sex.
UR - http://www.scopus.com/inward/record.url?scp=84959230841&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0146011
DO - 10.1371/journal.pone.0146011
M3 - Article
SN - 1932-6203
VL - 11
SP - 1
EP - 14
JO - PLoS One
JF - PLoS One
IS - 2
M1 - e0146011
ER -