CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

Xiaoming Zheng, Ted M. Kim, Rob Davidson, Seongju Lee, Cheongil Shin, Sook Yang

Research output: A Conference proceeding or a Chapter in BookConference contribution

5 Citations (Scopus)

Abstract

The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer’s VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

Original languageEnglish
Title of host publicationMedical Imaging 2014
Subtitle of host publicationPhysics of Medical Imaging
EditorsB R Whiting, C Hoeschen, D Kontos
Place of PublicationBellingham, WA, USA
PublisherSPIE
Pages1-10
Number of pages10
Volume9033
ISBN (Print)9780819498267
DOIs
Publication statusPublished - 2014
Externally publishedYes
EventMedical Imaging 2014: Physics of Medical Imaging - San Diego, CA, United States
Duration: 17 Feb 201420 Feb 2014

Publication series

NameProgress in Biomedical Optics and Imaging
PublisherSPIE
Volume9033
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2014: Physics of Medical Imaging
CountryUnited States
CitySan Diego, CA
Period17/02/1420/02/14

Fingerprint

x ray tubes
Computer-Assisted Image Processing
image reconstruction
Image reconstruction
Abdomen
Noise
X-Rays
Image quality
X rays
optimization
evaluation
Electric potential
electric potential
Logistics
Imaging techniques
figure of merit
abdomen
dosage
logistics
tubes

Cite this

Zheng, X., Kim, T. M., Davidson, R., Lee, S., Shin, C., & Yang, S. (2014). CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis. In B. R. Whiting, C. Hoeschen, & D. Kontos (Eds.), Medical Imaging 2014: Physics of Medical Imaging (Vol. 9033, pp. 1-10). [903328] (Progress in Biomedical Optics and Imaging; Vol. 9033). Bellingham, WA, USA: SPIE. https://doi.org/10.1117/12.2043201
Zheng, Xiaoming ; Kim, Ted M. ; Davidson, Rob ; Lee, Seongju ; Shin, Cheongil ; Yang, Sook. / CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis. Medical Imaging 2014: Physics of Medical Imaging. editor / B R Whiting ; C Hoeschen ; D Kontos. Vol. 9033 Bellingham, WA, USA : SPIE, 2014. pp. 1-10 (Progress in Biomedical Optics and Imaging).
@inproceedings{25b3b97fa2d94e79a99939641eb8f1e9,
title = "CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis",
abstract = "The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer{\^a}€™s VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.",
keywords = "AIDR 3D iterative reconstruction, FBP, image quality, just acceptable for diagnosis, logistic function, threshold dose to patient, Visual Grading Analysis, X-ray tube voltage",
author = "Xiaoming Zheng and Kim, {Ted M.} and Rob Davidson and Seongju Lee and Cheongil Shin and Sook Yang",
year = "2014",
doi = "10.1117/12.2043201",
language = "English",
isbn = "9780819498267",
volume = "9033",
series = "Progress in Biomedical Optics and Imaging",
publisher = "SPIE",
pages = "1--10",
editor = "Whiting, {B R} and C Hoeschen and D Kontos",
booktitle = "Medical Imaging 2014",
address = "United States",

}

Zheng, X, Kim, TM, Davidson, R, Lee, S, Shin, C & Yang, S 2014, CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis. in BR Whiting, C Hoeschen & D Kontos (eds), Medical Imaging 2014: Physics of Medical Imaging. vol. 9033, 903328, Progress in Biomedical Optics and Imaging, vol. 9033, SPIE, Bellingham, WA, USA, pp. 1-10, Medical Imaging 2014: Physics of Medical Imaging, San Diego, CA, United States, 17/02/14. https://doi.org/10.1117/12.2043201

CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis. / Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook.

Medical Imaging 2014: Physics of Medical Imaging. ed. / B R Whiting; C Hoeschen; D Kontos. Vol. 9033 Bellingham, WA, USA : SPIE, 2014. p. 1-10 903328 (Progress in Biomedical Optics and Imaging; Vol. 9033).

Research output: A Conference proceeding or a Chapter in BookConference contribution

TY - GEN

T1 - CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

AU - Zheng, Xiaoming

AU - Kim, Ted M.

AU - Davidson, Rob

AU - Lee, Seongju

AU - Shin, Cheongil

AU - Yang, Sook

PY - 2014

Y1 - 2014

N2 - The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer’s VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

AB - The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer’s VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

KW - AIDR 3D iterative reconstruction

KW - FBP

KW - image quality

KW - just acceptable for diagnosis

KW - logistic function

KW - threshold dose to patient

KW - Visual Grading Analysis

KW - X-ray tube voltage

UR - http://www.scopus.com/inward/record.url?scp=84901610525&partnerID=8YFLogxK

U2 - 10.1117/12.2043201

DO - 10.1117/12.2043201

M3 - Conference contribution

SN - 9780819498267

VL - 9033

T3 - Progress in Biomedical Optics and Imaging

SP - 1

EP - 10

BT - Medical Imaging 2014

A2 - Whiting, B R

A2 - Hoeschen, C

A2 - Kontos, D

PB - SPIE

CY - Bellingham, WA, USA

ER -

Zheng X, Kim TM, Davidson R, Lee S, Shin C, Yang S. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis. In Whiting BR, Hoeschen C, Kontos D, editors, Medical Imaging 2014: Physics of Medical Imaging. Vol. 9033. Bellingham, WA, USA: SPIE. 2014. p. 1-10. 903328. (Progress in Biomedical Optics and Imaging). https://doi.org/10.1117/12.2043201