TY - JOUR
T1 - Current velocity and spatial scale as determinants of the distribution and abundance of two rheophilic herbivorous insects
AU - Wellnitz, T.A.
AU - POFF, LeRoy
AU - Cosyleón, G.
AU - Steury, B.
N1 - cited By 38
PY - 2001
Y1 - 2001
N2 - Organisms frequently show marked preferences for specific environmental conditions, but these preferences may change with landscape scale. Patterns of distribution or abundance measured at different scales may reveal something about an organism's perception of the environment. To test this hypothesis, we measured densities of two herbivorous aquatic insects that differed in body morphology and mobility in relation to current velocity measured at different scales in the upper Colorado River (Colorado, USA). Streambed densities of the caddisfly larva Agapetus boulderensis (high hydrodynamic profile, low mobility) and mayfly nymph Epeorus sp. (low hydrodynamic profile, high mobility) were assessed at 3 spatial scales: whole riffles, individual cobbles within riffles, and point locations on cobbles. Riffles were several meters in extent, cobbles measured 10–30 cm in size, and the local scale was within a few centimeters of individual larvae (themselves ca. 0.5–1.0 cm in size). We also quantified the abundance of periphytic food for these herbivores at the cobble and riffle scales. Agapetus favored slow current (<30 cm s−1) across all scales. Epeorus, by contrast, favored fast current (60–80 cm s−1) at the local and riffle scale, but not at the cobble scale. Only Agapetus showed a significant relationship to current at the cobble scale, with greatest larval densities occurring at velocities near 30 cm s−1. We had predicted an inverse correlation between grazer density and periphytic abundance; however, this occurred only for Agapetus, and then only at the cobble scale. These data suggest that organisms respond to environmental gradients at different spatial scales and that the processes driving these responses may change with scale, e.g., shifting from individual habitat selection at local and cobble scales to population responses at the riffle scale. This study also highlights the importance of using the appropriate scale of measurement to accurately assess the relationship between organisms and environmental gradients across scale.
AB - Organisms frequently show marked preferences for specific environmental conditions, but these preferences may change with landscape scale. Patterns of distribution or abundance measured at different scales may reveal something about an organism's perception of the environment. To test this hypothesis, we measured densities of two herbivorous aquatic insects that differed in body morphology and mobility in relation to current velocity measured at different scales in the upper Colorado River (Colorado, USA). Streambed densities of the caddisfly larva Agapetus boulderensis (high hydrodynamic profile, low mobility) and mayfly nymph Epeorus sp. (low hydrodynamic profile, high mobility) were assessed at 3 spatial scales: whole riffles, individual cobbles within riffles, and point locations on cobbles. Riffles were several meters in extent, cobbles measured 10–30 cm in size, and the local scale was within a few centimeters of individual larvae (themselves ca. 0.5–1.0 cm in size). We also quantified the abundance of periphytic food for these herbivores at the cobble and riffle scales. Agapetus favored slow current (<30 cm s−1) across all scales. Epeorus, by contrast, favored fast current (60–80 cm s−1) at the local and riffle scale, but not at the cobble scale. Only Agapetus showed a significant relationship to current at the cobble scale, with greatest larval densities occurring at velocities near 30 cm s−1. We had predicted an inverse correlation between grazer density and periphytic abundance; however, this occurred only for Agapetus, and then only at the cobble scale. These data suggest that organisms respond to environmental gradients at different spatial scales and that the processes driving these responses may change with scale, e.g., shifting from individual habitat selection at local and cobble scales to population responses at the riffle scale. This study also highlights the importance of using the appropriate scale of measurement to accurately assess the relationship between organisms and environmental gradients across scale.
U2 - 10.1023/A:1011114414898
DO - 10.1023/A:1011114414898
M3 - Article
SN - 0921-2973
VL - 16
SP - 111
EP - 120
JO - Landscape Ecology
JF - Landscape Ecology
IS - 2
ER -