TY - JOUR
T1 - Determining the relative sensitivity of benthic diatoms to atrazine using rapid toxicity testing
T2 - A novel method
AU - Wood, Rebecca
AU - Mitrovic, Simon
AU - KEFFORD, Ben
PY - 2014/7/1
Y1 - 2014/7/1
N2 - Herbicides pose a potential threat to aquatic ecosystems, especially to phototrophic organisms such as benthic diatoms. Benthic diatoms may be a valuable indicator of the toxic impacts of herbicides in aquatic systems. However, this requires information on the herbicide sensitivity of awide range of freshwater benthic diatomtaxa. Unfortunately this information is only available for a limited number of species as current methods of developing new algae toxicity tests on individual taxa are lengthy and costly. To address this issue, we developed a new rapid toxicity test method to test natural benthic communities, from which the relative herbicide sensitivity of many individual taxa can be derived. This involved the collection of natural benthic communities from rocks in situ, which were placed directly into laboratory toxicity tests. Sensitivity data for several diatom genera in a 48 hour exposure toxicity testwere produced,without the need for cultures or multiple site visits. After exposure to the highest treatment of atrazine (500 µg L-1) therewere significant declines of healthy cells in the most sensitive genera: Gomphonema declined by 74%, Amphora by 62%, Cymbella by 54% and Ulnaria by 34% compared to control levels. In contrast, the genera, Eunotia, Achnanthidium and Navicula, had no statistically significant decline in cell health. This method can identify the diatom taxa most at risk of herbicide toxicity within the natural benthic diatom community. The rapid toxicity testing method presented is a simple and effective method to obtain sensitivity data for multiple taxa within a natural benthic diatom community in a relatively short period of time.
AB - Herbicides pose a potential threat to aquatic ecosystems, especially to phototrophic organisms such as benthic diatoms. Benthic diatoms may be a valuable indicator of the toxic impacts of herbicides in aquatic systems. However, this requires information on the herbicide sensitivity of awide range of freshwater benthic diatomtaxa. Unfortunately this information is only available for a limited number of species as current methods of developing new algae toxicity tests on individual taxa are lengthy and costly. To address this issue, we developed a new rapid toxicity test method to test natural benthic communities, from which the relative herbicide sensitivity of many individual taxa can be derived. This involved the collection of natural benthic communities from rocks in situ, which were placed directly into laboratory toxicity tests. Sensitivity data for several diatom genera in a 48 hour exposure toxicity testwere produced,without the need for cultures or multiple site visits. After exposure to the highest treatment of atrazine (500 µg L-1) therewere significant declines of healthy cells in the most sensitive genera: Gomphonema declined by 74%, Amphora by 62%, Cymbella by 54% and Ulnaria by 34% compared to control levels. In contrast, the genera, Eunotia, Achnanthidium and Navicula, had no statistically significant decline in cell health. This method can identify the diatom taxa most at risk of herbicide toxicity within the natural benthic diatom community. The rapid toxicity testing method presented is a simple and effective method to obtain sensitivity data for multiple taxa within a natural benthic diatom community in a relatively short period of time.
KW - toxicity
KW - herbicide
KW - stream diatoms
KW - benthic diatoms
KW - community
KW - rapid testing
KW - Rapid testing
KW - Toxicity
KW - Benthic diatoms
KW - Community
KW - Herbicide
KW - Stream diatoms
UR - http://www.scopus.com/inward/record.url?scp=84908276525&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/determining-relative-sensitivity-benthic-diatoms-atrazine-using-rapid-toxicity-testing-novel-method
U2 - 10.1016/j.scitotenv.2014.03.115
DO - 10.1016/j.scitotenv.2014.03.115
M3 - Article
SN - 0048-9697
VL - 485-486
SP - 421
EP - 427
JO - Science of the Total Environment
JF - Science of the Total Environment
IS - 1
ER -