TY - JOUR
T1 - Differences in end range of motion vertical jump kinetic and kinematic strategies between trained weightlifters and elite short track speed skaters
AU - Haug, William
AU - SPRATFORD, Wayne
AU - Chapman, Dale
AU - Drinkwater, Eric
PY - 2015
Y1 - 2015
N2 - The purpose of this investigation was to identify differences in end range of motion (ROM) kinetic and kinematic strategies between highly resistance and vertical jump-trained athletes and controls. Weightlifters (WL: n 4), short track speed skaters (STSS: n 5), and nonresistance-trained controls (C: n 6) performed 6 standing vertical squat jumps (SJ) and countermovement jumps (CMJ) without external resistance. Jump testing was performed using 3-dimensional marker trajectories captured with a 15-camera motion analysis system synchronized with 2 in-ground force plates. During SJ, there were large effects for the difference in time before toe off of peak vertical velocity between WL to STSS and C (ES: -1.43; ES: -1.73, respectively) and for the decrease between peak and toe off vertical velocity (ES: -1.28; ES: -1.71, respectively). During CMJ, there were large effects for the difference in time before toe off of peak vertical velocity between WL to STSS and C (ES: -1.28; ES: -1.53, respectively) and for decrease between peak and toe off vertical velocity (ES: -1.03; ES: -1.59, respectively). Accompanying these differences for both jump types were large effects for time of joint deceleration before toe off for all lower body joints between WL compared with C with large effects between WL and STSS at the hip and between STSS and C at the ankle. These findings suggest that the end ROM kinetic and kinematic strategy used during jumping is group-specific in power-trained athletes, with WL exhibiting superior strategies as compared with resistance- and jump-trained STSS.
AB - The purpose of this investigation was to identify differences in end range of motion (ROM) kinetic and kinematic strategies between highly resistance and vertical jump-trained athletes and controls. Weightlifters (WL: n 4), short track speed skaters (STSS: n 5), and nonresistance-trained controls (C: n 6) performed 6 standing vertical squat jumps (SJ) and countermovement jumps (CMJ) without external resistance. Jump testing was performed using 3-dimensional marker trajectories captured with a 15-camera motion analysis system synchronized with 2 in-ground force plates. During SJ, there were large effects for the difference in time before toe off of peak vertical velocity between WL to STSS and C (ES: -1.43; ES: -1.73, respectively) and for the decrease between peak and toe off vertical velocity (ES: -1.28; ES: -1.71, respectively). During CMJ, there were large effects for the difference in time before toe off of peak vertical velocity between WL to STSS and C (ES: -1.28; ES: -1.53, respectively) and for decrease between peak and toe off vertical velocity (ES: -1.03; ES: -1.59, respectively). Accompanying these differences for both jump types were large effects for time of joint deceleration before toe off for all lower body joints between WL compared with C with large effects between WL and STSS at the hip and between STSS and C at the ankle. These findings suggest that the end ROM kinetic and kinematic strategy used during jumping is group-specific in power-trained athletes, with WL exhibiting superior strategies as compared with resistance- and jump-trained STSS.
KW - impulse
KW - jump kinetics
KW - jump optimization
KW - jump strategy
UR - http://www.scopus.com/inward/record.url?scp=84941077167&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/differences-end-range-motion-vertical-jump-kinetic-kinematic-strategies-between-trained-weightlifter
U2 - 10.1519/JSC.0000000000000889
DO - 10.1519/JSC.0000000000000889
M3 - Article
SN - 1533-4287
VL - 29
SP - 2488
EP - 2496
JO - Journal of Strength and Conditioning Research
JF - Journal of Strength and Conditioning Research
IS - 9
ER -