TY - JOUR
T1 - Distribution and Risk Factors of Malaria in the Greater Accra Region in Ghana
AU - Kawaguchi, Koh
AU - Donkor, Elorm
AU - Lal, Aparna
AU - Kelly, Matthew
AU - Wangdi, Kinley
N1 - Funding Information:
This study did not receive any funding. K.W. is funded by the Australian National Health and Medical Research Council 2021 Investigator Grant (2008697).
Publisher Copyright:
© 2022 by the authors.
PY - 2022/9
Y1 - 2022/9
N2 - Malaria remains a serious public health challenge in Ghana including the Greater Accra Region. This study aimed to quantify the spatial, temporal and spatio-temporal patterns of malaria in the Greater Accra Region to inform targeted allocation of health resources. Malaria cases data from 2015 to 2019 were obtained from the Ghanaian District Health Information and Management System and aggregated at a district and monthly level. Spatial analysis was conducted using the Global Moran's I, Getis-Ord Gi*, and local indicators of spatial autocorrelation. Kulldorff's space-time scan statistics were used to investigate space-time clustering. A negative binomial regression was used to find correlations between climatic factors and sociodemographic characteristics and the incidence of malaria. A total of 1,105,370 malaria cases were reported between 2015 and 2019. Significant seasonal variation was observed, with June and July being the peak months of reported malaria cases. The hotspots districts were Kpone-Katamanso Municipal District, Ashaiman Municipal Districts, Tema Municipal District, and La-Nkwantanang-Madina Municipal District. While La-Nkwantanang-Madina Municipal District was high-high cluster. The Spatio-temporal clusters occurred between February 2015 and July 2017 in the districts of Ningo-Prampram, Shai-Osudoku, Ashaiman Municipal, and Kpone-Katamanso Municipal with a radius of 26.63 km and an relative risk of 4.66 (p < 0.001). Malaria cases were positively associated with monthly rainfall (adjusted odds ratio [AOR] = 1.01; 95% confidence interval [CI] = 1.005, 1.016) and the previous month's cases (AOR = 1.064; 95% CI 1.062, 1.065) and negatively correlated with minimum temperature (AOR = 0.86, 95% CI = 0.823, 0.899) and population density (AOR = 0.996, 95% CI = 0.994, 0.998). Malaria control and prevention should be strengthened in hotspot districts in the appropriate months to improve program effectiveness.
AB - Malaria remains a serious public health challenge in Ghana including the Greater Accra Region. This study aimed to quantify the spatial, temporal and spatio-temporal patterns of malaria in the Greater Accra Region to inform targeted allocation of health resources. Malaria cases data from 2015 to 2019 were obtained from the Ghanaian District Health Information and Management System and aggregated at a district and monthly level. Spatial analysis was conducted using the Global Moran's I, Getis-Ord Gi*, and local indicators of spatial autocorrelation. Kulldorff's space-time scan statistics were used to investigate space-time clustering. A negative binomial regression was used to find correlations between climatic factors and sociodemographic characteristics and the incidence of malaria. A total of 1,105,370 malaria cases were reported between 2015 and 2019. Significant seasonal variation was observed, with June and July being the peak months of reported malaria cases. The hotspots districts were Kpone-Katamanso Municipal District, Ashaiman Municipal Districts, Tema Municipal District, and La-Nkwantanang-Madina Municipal District. While La-Nkwantanang-Madina Municipal District was high-high cluster. The Spatio-temporal clusters occurred between February 2015 and July 2017 in the districts of Ningo-Prampram, Shai-Osudoku, Ashaiman Municipal, and Kpone-Katamanso Municipal with a radius of 26.63 km and an relative risk of 4.66 (p < 0.001). Malaria cases were positively associated with monthly rainfall (adjusted odds ratio [AOR] = 1.01; 95% confidence interval [CI] = 1.005, 1.016) and the previous month's cases (AOR = 1.064; 95% CI 1.062, 1.065) and negatively correlated with minimum temperature (AOR = 0.86, 95% CI = 0.823, 0.899) and population density (AOR = 0.996, 95% CI = 0.994, 0.998). Malaria control and prevention should be strengthened in hotspot districts in the appropriate months to improve program effectiveness.
KW - Ghana/epidemiology
KW - Humans
KW - Incidence
KW - Malaria/epidemiology
KW - Risk Factors
KW - Spatial Analysis
KW - Greater Accra region
KW - Ghana
KW - malaria
KW - modelling
KW - space
KW - clustering
KW - time
UR - http://www.scopus.com/inward/record.url?scp=85139811020&partnerID=8YFLogxK
U2 - 10.3390/ijerph191912006
DO - 10.3390/ijerph191912006
M3 - Article
C2 - 36231306
SN - 1660-4601
VL - 19
SP - 1
EP - 13
JO - International Journal of Environmental Research and Public Health
JF - International Journal of Environmental Research and Public Health
IS - 19
M1 - 12006
ER -