Drug repositioning of Clopidogrel or Triamterene to inhibit influenza virus replication in vitro

Nichole Orr-Burks, Jackelyn Murray, Kyle V. Todd, Abhijeet Bakre, Ralph A. Tripp

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
23 Downloads (Pure)


Influenza viruses cause respiratory tract infections and substantial health concerns. Infection may result in mild to severe respiratory disease associated with morbidity and some mortality. Several anti-influenza drugs are available, but these agents target viral components and are susceptible to drug resistance. There is a need for new antiviral drug strategies that include repurposing of clinically approved drugs. Drugs that target cellular machinery necessary for influenza virus replication can provide a means for inhibiting influenza virus replication. We used RNA interference screening to identify key host cell genes required for influenza replication, and then FDA-approved drugs that could be repurposed for targeting host genes. We examined the effects of Clopidogrel and Triamterene to inhibit A/WSN/33 (EC50 5.84 uM and 31.48 uM, respectively), A/CA/04/09 (EC50 6.432 uM and 3.32 uM, respectively), and B/Yamagata/16/1988 (EC50 0.28 uM and 0.11 uM, respectively) replication. Clopidogrel and Triamterene provide a druggable approach to influenza treatment across multiple strains and subtypes.

Original languageEnglish
Article numbere0259129
Pages (from-to)1-18
Number of pages18
JournalPLoS One
Issue number10 October
Publication statusPublished - Oct 2021
Externally publishedYes


Dive into the research topics of 'Drug repositioning of Clopidogrel or Triamterene to inhibit influenza virus replication in vitro'. Together they form a unique fingerprint.

Cite this