Dynamics of a Fermi Gas Quenched to Unitarity

P. Dyke, A. Hogan, I. Herrera, C. C.N. Kuhn, S. Hoinka, C. J. Vale

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We present an experimental study of a two component Fermi gas following an interaction quench into the superfluid phase. Starting with a weakly attractive gas in the normal phase, interactions are ramped to unitarity at a range of rates and we measure the subsequent dynamics as the gas approaches equilibrium. Both the formation and condensation of fermion pairs are mapped via measurements of the pair momentum distribution and can take place on very different timescales, depending on the adiabaticity of the quench. The contact parameter is seen to respond very quickly to changes in the interaction strength, indicating that short-range correlations, based on the occupation of high-momentum modes, evolve far more rapidly than the correlations in low-momentum modes necessary for pair condensation.

Original languageEnglish
Article number100405
Pages (from-to)1-6
Number of pages6
JournalPhysical Review Letters
Volume127
Issue number10
DOIs
Publication statusPublished - 31 Aug 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Dynamics of a Fermi Gas Quenched to Unitarity'. Together they form a unique fingerprint.

Cite this