TY - JOUR
T1 - Effects of athlete-dependent traits on joint and system countermovement-jump power
AU - Williams, Kym J.
AU - Chapman, Dale W.
AU - Phillips, Elissa J.
AU - Ball, Nick
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Purpose: To establish the influence of athlete-dependent characteristics on the generation and timing of system and individual joint powers during a countermovement jump (CMJ). Methods: Male national representative athletes from volleyball (n = 7), basketball (n = 6), and rugby (n = 7) performed a set of 3 CMJs at relative barbell loads of 0%, 10%, 20%, 30%, and 40% of absolute back-squat strength. Ground-reaction forces and joint kinematics were captured using a 16-camera motion-capture system integrated with 2 in-ground force plates. Limb lengths and cross-sectional areas were defined using 3-dimensional photonic scans. A repeated-measures analysis of variance determined the interaction between system and joint load–power profiles, whereas a multiregression analysis defined the explained variance of athlete-dependent characteristics on the load that maximized system power. Results: System and isolated hip, knee, and ankle peak powers were maximized across a spectrum of loads between and within sports; power values were not significantly different across loads. A positive shift in the timing of hip and ankle peak powers corresponded to a significant (P < .05) positive shift in the timing of system peak power to occur closer to toe-off. An optimal 3-input combination of athlete-dependent characteristics accounted for 68% (P < .001) of the explained variance in the load that maximized system peak power. Conclusion: The load maximizing system power is athlete-dependent, with a mixture of training and heredity-related characteristics influencing CMJ load–power profiles. The authors recommend that a combination of relative loads be individually prescribed to maximize the generation and translation of system CMJ power.
AB - Purpose: To establish the influence of athlete-dependent characteristics on the generation and timing of system and individual joint powers during a countermovement jump (CMJ). Methods: Male national representative athletes from volleyball (n = 7), basketball (n = 6), and rugby (n = 7) performed a set of 3 CMJs at relative barbell loads of 0%, 10%, 20%, 30%, and 40% of absolute back-squat strength. Ground-reaction forces and joint kinematics were captured using a 16-camera motion-capture system integrated with 2 in-ground force plates. Limb lengths and cross-sectional areas were defined using 3-dimensional photonic scans. A repeated-measures analysis of variance determined the interaction between system and joint load–power profiles, whereas a multiregression analysis defined the explained variance of athlete-dependent characteristics on the load that maximized system power. Results: System and isolated hip, knee, and ankle peak powers were maximized across a spectrum of loads between and within sports; power values were not significantly different across loads. A positive shift in the timing of hip and ankle peak powers corresponded to a significant (P < .05) positive shift in the timing of system peak power to occur closer to toe-off. An optimal 3-input combination of athlete-dependent characteristics accounted for 68% (P < .001) of the explained variance in the load that maximized system peak power. Conclusion: The load maximizing system power is athlete-dependent, with a mixture of training and heredity-related characteristics influencing CMJ load–power profiles. The authors recommend that a combination of relative loads be individually prescribed to maximize the generation and translation of system CMJ power.
KW - Anthropometrics
KW - Jump kinematics
KW - Kinetics
KW - Neurophysiology
UR - http://www.scopus.com/inward/record.url?scp=85057766760&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/effects-athletedependent-traits-joint-system-countermovementjump-power
U2 - 10.1123/ijspp.2018-0050
DO - 10.1123/ijspp.2018-0050
M3 - Article
AN - SCOPUS:85057766760
SN - 1555-0265
VL - 13
SP - 1378
EP - 1385
JO - International Journal of Sports Physiology and Performance
JF - International Journal of Sports Physiology and Performance
IS - 10
ER -