TY - JOUR
T1 - Effects of freeze-thaw cycling on metal-phosphate formation and stability in single and multi-metal systems
AU - Hafsteinsdóttir, Erla G.
AU - WHITE, Duanne
AU - Gore, Damian
PY - 2013
Y1 - 2013
N2 - Freezeethaw cycling may influence the chemistry, mineral stability and reaction rate during metal orthophosphate fixation. This study assessed the formation and stability of Cu-, Pb-, and Zn-phosphates in chemically simple laboratory systems during 240 freezeethaw cycles (120 days) from +10 to -20 oC, using X-ray diffractometry. In single heavy metal systems, chloro- and hydroxy-pyromorphite (Pb5(PO4)3(Cl,OH)), sodalite (Na6Zn6(PO4)6.8H2O), chiral zincophosphate (Na12(Zn12P12O48).12H2O), and copper phosphate hydrate (Cu3(PO4)2.3H2O) were the primary phosphate minerals that formed, and were typically stable during the experiment. Zinc and Cu-phosphate formationwas reduced in multi heavy metal systems, and was substantially lower in abundance than chloropyromorphite. Successful Cu-, Pb- and Znphosphate formation can be expected in cold and freezing environments like the polar regions. However, field implementation of orthophosphate fixation needs to consider competing ion effects, concentration of the phosphate source, and the amount of free-water.
AB - Freezeethaw cycling may influence the chemistry, mineral stability and reaction rate during metal orthophosphate fixation. This study assessed the formation and stability of Cu-, Pb-, and Zn-phosphates in chemically simple laboratory systems during 240 freezeethaw cycles (120 days) from +10 to -20 oC, using X-ray diffractometry. In single heavy metal systems, chloro- and hydroxy-pyromorphite (Pb5(PO4)3(Cl,OH)), sodalite (Na6Zn6(PO4)6.8H2O), chiral zincophosphate (Na12(Zn12P12O48).12H2O), and copper phosphate hydrate (Cu3(PO4)2.3H2O) were the primary phosphate minerals that formed, and were typically stable during the experiment. Zinc and Cu-phosphate formationwas reduced in multi heavy metal systems, and was substantially lower in abundance than chloropyromorphite. Successful Cu-, Pb- and Znphosphate formation can be expected in cold and freezing environments like the polar regions. However, field implementation of orthophosphate fixation needs to consider competing ion effects, concentration of the phosphate source, and the amount of free-water.
KW - Polar regions
KW - Copper
KW - Lead
KW - Zinc
KW - Contamination.
U2 - 10.1016/j.envpol.2013.01.007
DO - 10.1016/j.envpol.2013.01.007
M3 - Article
SN - 0269-7491
VL - 175
SP - 168
EP - 177
JO - Environmental Pollution
JF - Environmental Pollution
ER -