Effects of freeze-thaw cycling on metal-phosphate formation and stability in single and multi-metal systems

Erla G. Hafsteinsdóttir, Duanne WHITE, Damian Gore

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Freezeethaw cycling may influence the chemistry, mineral stability and reaction rate during metal orthophosphate fixation. This study assessed the formation and stability of Cu-, Pb-, and Zn-phosphates in chemically simple laboratory systems during 240 freezeethaw cycles (120 days) from +10 to -20 oC, using X-ray diffractometry. In single heavy metal systems, chloro- and hydroxy-pyromorphite (Pb5(PO4)3(Cl,OH)), sodalite (Na6Zn6(PO4)6.8H2O), chiral zincophosphate (Na12(Zn12P12O48).12H2O), and copper phosphate hydrate (Cu3(PO4)2.3H2O) were the primary phosphate minerals that formed, and were typically stable during the experiment. Zinc and Cu-phosphate formationwas reduced in multi heavy metal systems, and was substantially lower in abundance than chloropyromorphite. Successful Cu-, Pb- and Znphosphate formation can be expected in cold and freezing environments like the polar regions. However, field implementation of orthophosphate fixation needs to consider competing ion effects, concentration of the phosphate source, and the amount of free-water.
Original languageEnglish
Pages (from-to)168-177
Number of pages10
JournalEnvironmental Pollution
Volume175
DOIs
Publication statusPublished - 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Effects of freeze-thaw cycling on metal-phosphate formation and stability in single and multi-metal systems'. Together they form a unique fingerprint.

Cite this