Abstract
Levodopa (L-dopa) is the most widely used agent for the symptomatic relief of Parkinson's disease. There is concern that chronic L-dopa treatment may be detrimental, with some studies suggesting that L-dopa may be neurotoxic. A potentially important mechanism whereby L-dopa may exert neurotoxic effects has been overlooked: that of the incorporation of L-dopa into proteins by protein synthesis. L-Dopa competes with tyrosine as a substrate in protein synthesis in vitro. We provide evidence that L-dopa can also be incorporated into proteins in vivo. Blood from L-dopa-treated and -non-treated patients was separated into protein, erythrocyte and lymphocyte fractions and levels of protein-incorporated dopa quantified by HPLC. Levels of protein-incorporated dopa were significantly increased in lymphocyte cell proteins from L-dopa-treated patients. This has not arisen from oxidative pathways as there was no evidence of oxidative damage to proteins. In addition, there was no increase in protein-incorporated dopa in erythrocytes, which are not actively synthesizing proteins. We suggest that protein-incorporated dopa could also be generated in the CNS. The accumulation of protein-incorporated dopa in cells is associated with oxidative stress and impaired function and could contribute to some of the problems associated with long-term L-dopa treatment.
Original language | English |
---|---|
Pages (from-to) | 1061-1067 |
Number of pages | 7 |
Journal | Journal of Neurochemistry |
Volume | 98 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2006 |