Abstract
Scat DNA metabarcoding is increasingly being used to track the feeding ecology of elusive wildlife species. This approach has greatly increased the resolution and detection success of prey items contained in scats when compared with other classical methods. However, there have been few studies that have systematically tested the applicability and reliability of this approach to study the diet of large felids species in the wild. Here we assessed the effectiveness of this approach in the cheetah Acinonyx jubatus. We tested how scat degradation, meal size, prey species consumed and feeding day (the day a particular prey was consumed) influenced prey DNA detection success in captive cheetahs. We demonstrated that it is possible to obtain diet information from 60-day old scats using genetic approaches, but the efficiency decreased over time. Probability of species-identification was highest for food items consumed one day prior to scat collection and the probability of being able to identify the species consumed increased with the proportion of the prey consumed. Detection success varied among prey species but not by individual cheetah. Identification of prey species using DNA detection methods from a single consumption event worked for samples collected between 8 and 72 hours post-feeding. Our approach confirms the utility of genetic approaches to identify prey species in scats and highlight the need to account for the systematic bias in results to control for possible scat degradation, feeding day, meal size and prey species consumed especially in the wild-collected scats.
Original language | English |
---|---|
Article number | e0225805 |
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | PLoS One |
Volume | 15 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Dec 2019 |