Force- and moment-generating capacities of muscles in the distal forelimb of the horse

Nicholas A.T. Brown, Marcus G. Pandy, Christopher E. Kawcak, C. Wayne McIlwraith

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

A detailed musculoskeletal model of the distal equine forelimb was developed to study the influence of musculoskeletal geometry (i.e. muscle paths) and muscle physiology (i.e. force-length properties) on the force- and moment-generating capacities of muscles crossing the carpal and metacarpophalangeal joints. The distal forelimb skeleton was represented as a five degree-of-freedom kinematic linkage comprised of eight bones (humerus, radius and ulna combined, proximal carpus, distal carpus, metacarpus, proximal phalanx, intermediate phalanx and distal phalanx) and seven joints (elbow, radiocarpal, intercarpal, carpometacarpal, metacarpophalangeal (MCP), proximal interphalangeal (pastern) and distal interphalangeal (coffin)). Bone surfaces were reconstructed from computed tomography scans obtained from the left forelimb of a Thoroughbred horse. The model was actuated by nine muscle-tendon units. Each unit was represented as a three-element Hill-type muscle in series with an elastic tendon. Architectural parameters specifying the force-producing properties of each muscle-tendon unit were found by dissecting seven forelimbs from five Thoroughbred horses. Maximum isometric moments were calculated for a wide range of joint angles by fully activating the extensor and flexor muscles crossing the carpus and MCP joint. Peak isometric moments generated by the flexor muscles were an order of magnitude greater than those generated by the extensor muscles at both the carpus and the MCP joint. For each flexor muscle in the model, the shape of the maximum isometric joint moment-angle curve was dominated by the variation in muscle force. By contrast, the moment-angle curves for the muscles that extend the MCP joint were determined mainly by the variation in muscle moment arms. The suspensory and check ligaments contributed more than half of the total support moment developed about the MCP joint in the model. When combined with appropriate in vivo measurements of joint kinematics and ground-reaction forces, the model may be used to determine muscle-tendon and joint-reaction forces generated during gait.

Original languageEnglish
Pages (from-to)101-113
Number of pages13
JournalJournal of Anatomy
Volume203
Issue number1
DOIs
Publication statusPublished - 2003
Externally publishedYes

Fingerprint

Forelimb
horse
forelimbs
Horses
muscle
horses
Muscles
muscles
joints (animal)
Metacarpophalangeal Joint
carpus
tendons
Tendons
phalanges
Joints
kinematics
Biomechanical Phenomena
bone
muscle physiology
bones

Cite this

Brown, Nicholas A.T. ; Pandy, Marcus G. ; Kawcak, Christopher E. ; McIlwraith, C. Wayne. / Force- and moment-generating capacities of muscles in the distal forelimb of the horse. In: Journal of Anatomy. 2003 ; Vol. 203, No. 1. pp. 101-113.
@article{9c89f7b9f9e3449aa773d69f83ebe487,
title = "Force- and moment-generating capacities of muscles in the distal forelimb of the horse",
abstract = "A detailed musculoskeletal model of the distal equine forelimb was developed to study the influence of musculoskeletal geometry (i.e. muscle paths) and muscle physiology (i.e. force-length properties) on the force- and moment-generating capacities of muscles crossing the carpal and metacarpophalangeal joints. The distal forelimb skeleton was represented as a five degree-of-freedom kinematic linkage comprised of eight bones (humerus, radius and ulna combined, proximal carpus, distal carpus, metacarpus, proximal phalanx, intermediate phalanx and distal phalanx) and seven joints (elbow, radiocarpal, intercarpal, carpometacarpal, metacarpophalangeal (MCP), proximal interphalangeal (pastern) and distal interphalangeal (coffin)). Bone surfaces were reconstructed from computed tomography scans obtained from the left forelimb of a Thoroughbred horse. The model was actuated by nine muscle-tendon units. Each unit was represented as a three-element Hill-type muscle in series with an elastic tendon. Architectural parameters specifying the force-producing properties of each muscle-tendon unit were found by dissecting seven forelimbs from five Thoroughbred horses. Maximum isometric moments were calculated for a wide range of joint angles by fully activating the extensor and flexor muscles crossing the carpus and MCP joint. Peak isometric moments generated by the flexor muscles were an order of magnitude greater than those generated by the extensor muscles at both the carpus and the MCP joint. For each flexor muscle in the model, the shape of the maximum isometric joint moment-angle curve was dominated by the variation in muscle force. By contrast, the moment-angle curves for the muscles that extend the MCP joint were determined mainly by the variation in muscle moment arms. The suspensory and check ligaments contributed more than half of the total support moment developed about the MCP joint in the model. When combined with appropriate in vivo measurements of joint kinematics and ground-reaction forces, the model may be used to determine muscle-tendon and joint-reaction forces generated during gait.",
keywords = "Joint moment, Moment arm, Muscle force, Musculoskeletal model",
author = "Brown, {Nicholas A.T.} and Pandy, {Marcus G.} and Kawcak, {Christopher E.} and McIlwraith, {C. Wayne}",
year = "2003",
doi = "10.1046/j.1469-7580.2003.00206.x",
language = "English",
volume = "203",
pages = "101--113",
journal = "Journal of Anatomy",
issn = "0021-8782",
publisher = "Wiley-Blackwell",
number = "1",

}

Force- and moment-generating capacities of muscles in the distal forelimb of the horse. / Brown, Nicholas A.T.; Pandy, Marcus G.; Kawcak, Christopher E.; McIlwraith, C. Wayne.

In: Journal of Anatomy, Vol. 203, No. 1, 2003, p. 101-113.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Force- and moment-generating capacities of muscles in the distal forelimb of the horse

AU - Brown, Nicholas A.T.

AU - Pandy, Marcus G.

AU - Kawcak, Christopher E.

AU - McIlwraith, C. Wayne

PY - 2003

Y1 - 2003

N2 - A detailed musculoskeletal model of the distal equine forelimb was developed to study the influence of musculoskeletal geometry (i.e. muscle paths) and muscle physiology (i.e. force-length properties) on the force- and moment-generating capacities of muscles crossing the carpal and metacarpophalangeal joints. The distal forelimb skeleton was represented as a five degree-of-freedom kinematic linkage comprised of eight bones (humerus, radius and ulna combined, proximal carpus, distal carpus, metacarpus, proximal phalanx, intermediate phalanx and distal phalanx) and seven joints (elbow, radiocarpal, intercarpal, carpometacarpal, metacarpophalangeal (MCP), proximal interphalangeal (pastern) and distal interphalangeal (coffin)). Bone surfaces were reconstructed from computed tomography scans obtained from the left forelimb of a Thoroughbred horse. The model was actuated by nine muscle-tendon units. Each unit was represented as a three-element Hill-type muscle in series with an elastic tendon. Architectural parameters specifying the force-producing properties of each muscle-tendon unit were found by dissecting seven forelimbs from five Thoroughbred horses. Maximum isometric moments were calculated for a wide range of joint angles by fully activating the extensor and flexor muscles crossing the carpus and MCP joint. Peak isometric moments generated by the flexor muscles were an order of magnitude greater than those generated by the extensor muscles at both the carpus and the MCP joint. For each flexor muscle in the model, the shape of the maximum isometric joint moment-angle curve was dominated by the variation in muscle force. By contrast, the moment-angle curves for the muscles that extend the MCP joint were determined mainly by the variation in muscle moment arms. The suspensory and check ligaments contributed more than half of the total support moment developed about the MCP joint in the model. When combined with appropriate in vivo measurements of joint kinematics and ground-reaction forces, the model may be used to determine muscle-tendon and joint-reaction forces generated during gait.

AB - A detailed musculoskeletal model of the distal equine forelimb was developed to study the influence of musculoskeletal geometry (i.e. muscle paths) and muscle physiology (i.e. force-length properties) on the force- and moment-generating capacities of muscles crossing the carpal and metacarpophalangeal joints. The distal forelimb skeleton was represented as a five degree-of-freedom kinematic linkage comprised of eight bones (humerus, radius and ulna combined, proximal carpus, distal carpus, metacarpus, proximal phalanx, intermediate phalanx and distal phalanx) and seven joints (elbow, radiocarpal, intercarpal, carpometacarpal, metacarpophalangeal (MCP), proximal interphalangeal (pastern) and distal interphalangeal (coffin)). Bone surfaces were reconstructed from computed tomography scans obtained from the left forelimb of a Thoroughbred horse. The model was actuated by nine muscle-tendon units. Each unit was represented as a three-element Hill-type muscle in series with an elastic tendon. Architectural parameters specifying the force-producing properties of each muscle-tendon unit were found by dissecting seven forelimbs from five Thoroughbred horses. Maximum isometric moments were calculated for a wide range of joint angles by fully activating the extensor and flexor muscles crossing the carpus and MCP joint. Peak isometric moments generated by the flexor muscles were an order of magnitude greater than those generated by the extensor muscles at both the carpus and the MCP joint. For each flexor muscle in the model, the shape of the maximum isometric joint moment-angle curve was dominated by the variation in muscle force. By contrast, the moment-angle curves for the muscles that extend the MCP joint were determined mainly by the variation in muscle moment arms. The suspensory and check ligaments contributed more than half of the total support moment developed about the MCP joint in the model. When combined with appropriate in vivo measurements of joint kinematics and ground-reaction forces, the model may be used to determine muscle-tendon and joint-reaction forces generated during gait.

KW - Joint moment

KW - Moment arm

KW - Muscle force

KW - Musculoskeletal model

UR - http://www.scopus.com/inward/record.url?scp=0037780368&partnerID=8YFLogxK

U2 - 10.1046/j.1469-7580.2003.00206.x

DO - 10.1046/j.1469-7580.2003.00206.x

M3 - Article

VL - 203

SP - 101

EP - 113

JO - Journal of Anatomy

JF - Journal of Anatomy

SN - 0021-8782

IS - 1

ER -