Abstract
BACKGROUND: Polymorphisms in the plant homeodomain finger protein 11 gene (PHF11) are associated with increased total serum IgE levels, asthma, and severe atopic dermatitis (AD) in children. Although PHF11 includes a plant homeodomain, a motif often found in transcriptional regulators, the function of PHF11 has not been investigated.
OBJECTIVE: We sought to test (1) whether PHF11 regulates the transcription of genes involved in allergic disorders and (2) whether polymorphisms in PHF11 predict changes in the expression or function of this gene.
METHODS: Microarray analysis was used to examine the expression of PHF11 in different immune cell subsets, and the function of PHF11 was tested by using small interfering RNA-induced knockdown or overexpression of PHF11 in primary CD4+ T cells or Jurkat T cells. Genotype-dependent effects on PHF11 expression were tested by using an allele-specific gene expression, and the transcriptional activity of PHF11 was determined by using luciferase hybrid gene reporter assays and in vitro DNA-binding electromobility shift assays.
RESULTS: PHF11 expression was higher in T(H)1 cells relative to that in T(H)2 cells, and knockdown of PHF11 expression reduced expression of the T(H)1-type cytokines IFN-gamma and IL-2. The G-allele of a 3' untranslated region polymorphism associated with AD was correlated with reduced abundance of PHF11 RNA in T(H)1 cells, as well as an increase in a PHF11 isoform lacking exon II. Evidence was also found for a physical and functional interaction between PHF11 and the p65 subunit of nuclear factor kappaB.
CONCLUSION: PHF11 is a regulator of T(H)1-type cytokine gene expression. The reduction in PHF11 expression seen with an AD-associated genotype could contribute to the strong T(H)2 responses that characterize many allergic individuals
OBJECTIVE: We sought to test (1) whether PHF11 regulates the transcription of genes involved in allergic disorders and (2) whether polymorphisms in PHF11 predict changes in the expression or function of this gene.
METHODS: Microarray analysis was used to examine the expression of PHF11 in different immune cell subsets, and the function of PHF11 was tested by using small interfering RNA-induced knockdown or overexpression of PHF11 in primary CD4+ T cells or Jurkat T cells. Genotype-dependent effects on PHF11 expression were tested by using an allele-specific gene expression, and the transcriptional activity of PHF11 was determined by using luciferase hybrid gene reporter assays and in vitro DNA-binding electromobility shift assays.
RESULTS: PHF11 expression was higher in T(H)1 cells relative to that in T(H)2 cells, and knockdown of PHF11 expression reduced expression of the T(H)1-type cytokines IFN-gamma and IL-2. The G-allele of a 3' untranslated region polymorphism associated with AD was correlated with reduced abundance of PHF11 RNA in T(H)1 cells, as well as an increase in a PHF11 isoform lacking exon II. Evidence was also found for a physical and functional interaction between PHF11 and the p65 subunit of nuclear factor kappaB.
CONCLUSION: PHF11 is a regulator of T(H)1-type cytokine gene expression. The reduction in PHF11 expression seen with an AD-associated genotype could contribute to the strong T(H)2 responses that characterize many allergic individuals
Original language | English |
---|---|
Pages (from-to) | 1148-1154 |
Number of pages | 7 |
Journal | Journal of Allergy and Clinical Immunology |
Volume | 121 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2008 |
Externally published | Yes |