Abstract
The well-known generalization of hard C-means (HCM) clustering is fuzzy C-means (FCM) clustering where a weight exponent on each fuzzy membership is introduced as the degree of fuzziness. An alternative generalization of HCM clustering is proposed in this paper. This is called fuzzy entropy (FE) clustering where a weight factor of the fuzzy entropy function is introduced as the degree of fuzzy entropy. The weight factor is similar to the weight exponent and has a physical interpretation. The noise clustering approach, the fuzzy covariance matrix and the fuzzy mixture weight are also proposed. Moreover, we can show Gaussian mixture clustering is regarded as a special case of FE clustering. Some illustrative examples are performed on the Butterfly and Iris data.
Original language | English |
---|---|
Pages | 152-157 |
Number of pages | 6 |
DOIs | |
Publication status | Published - 2000 |
Event | FUZZ-IEEE 2000: 9th IEEE International Conference on Fuzzy Systems - San Antonio, TX, USA Duration: 7 May 2000 → 10 May 2000 |
Conference
Conference | FUZZ-IEEE 2000: 9th IEEE International Conference on Fuzzy Systems |
---|---|
City | San Antonio, TX, USA |
Period | 7/05/00 → 10/05/00 |