TY - JOUR
T1 - GEMAS: Geochemical background and mineral potential of emerging tech-critical elements in Europe revealed from low-sampling density geochemical mapping
AU - The GEMAS Project Team
AU - Négrel, Philippe
AU - Ladenberger, Anna
AU - Reimann, Clemens
AU - Birke, Manfred
AU - Demetriades, Alecos
AU - Sadeghi, Martiya
AU - Hoogewerff, J.
AU - Kirby, J.
N1 - Funding Information:
The GEMAS project is a cooperative project of the EuroGeoSurveys Geochemistry Expert Group with a number of outside organisations (e.g. Alterra, The Netherlands; Norwegian Forest and Landscape Institute; Research Group Swiss Soil Monitoring Network, Swiss Research Station Agroscope Reckenholz-Tänikon, several Ministries of the Environment and University Departments of Geosciences, Chemistry and Mathematics in a number of European countries and New Zealand; ARCHE Consulting in Belgium; CSIRO Land and Water in Adelaide, Australia). The analytical work was co-financed by the following industry organisations: Eurometaux, European Borates Association, European Copper Institute, European Precious Metals Federation, International Antimony Association, International Lead Association-Europe, International Manganese Institute, International Molybdenum Association, International Tin Research Institute, International Zinc Association, The Cobalt Development Institute, The Nickel Institute, The (REACH) Selenium and Tellurium Consortium and The (REACH) Vanadium Consortium. The Directors of the European Geological Surveys, and the additional participating organisations, are thanked for making sampling of almost all of Europe in a tight time schedule possible. The Federal Institute for Geosciences and Natural Resourced (BGR), the Geological Survey of Norway and SGS (Canada) are thanked for special analytical input to the project.
Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The demand for ‘high-tech’ element resources (e.g., rare earth elements, lithium, platinum group elements) has increased with their continued consumption in developed countries and the emergence of developing economies. To provide a sound knowledge base for future generations, it is necessary to identify the spatial distribution of critical elements at a broad-scale, and to delineate areas for follow-up surveys. Subsequently, this knowledge can be used to study possible environmental consequences of the increased use of these resources. In this paper, three critical industrial elements (Sb, W, Li) from low-sampling density geochemical mapping at the continental-scale are presented. The geochemical distribution and spatial patterns have been obtained from agricultural soil samples (Ap-horizon, 0–20 cm; N = 2108 samples) collected at a density of 1 site per 2500 km2 and analysed by ICP-MS after a hot aqua regia digestion as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project in 33 European countries. Most of the geochemical maps show exclusively natural background element concentrations with minor, or without, anthropogenic influence. The maximum extent of the last glaciation is marked as a discrete element concentration break, and a distinct difference occurs in element concentration levels between the soil of northern and southern Europe, most likely an effect of soil genesis, age and weathering. The Sb, W and Li concentrations in soil provide a general overview of element spatial distribution in relation to complexity of the underlying bedrock and element mobility in the surface environment at the continental-scale. The chemical composition of agricultural soil represents largely the primary mineralogy of the source bedrock, the effects of pre- and post-depositional chemical weathering, formation of secondary products, such as clays, and element mobility, either by leaching or mineral sorting. Observed geochemical patterns of Li, W and Sb can be often linked with known mineralisation as recorded in the ProMine Mineral Database, where elements in question occur either as main or secondary resources. Anthropogenic impact has only been identified locally, predominantly in the vicinity of large urban agglomerations. Unexplained high element concentrations may potentially indicate new sources for high-tech elements and should be investigated at a more detailed scale.
AB - The demand for ‘high-tech’ element resources (e.g., rare earth elements, lithium, platinum group elements) has increased with their continued consumption in developed countries and the emergence of developing economies. To provide a sound knowledge base for future generations, it is necessary to identify the spatial distribution of critical elements at a broad-scale, and to delineate areas for follow-up surveys. Subsequently, this knowledge can be used to study possible environmental consequences of the increased use of these resources. In this paper, three critical industrial elements (Sb, W, Li) from low-sampling density geochemical mapping at the continental-scale are presented. The geochemical distribution and spatial patterns have been obtained from agricultural soil samples (Ap-horizon, 0–20 cm; N = 2108 samples) collected at a density of 1 site per 2500 km2 and analysed by ICP-MS after a hot aqua regia digestion as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project in 33 European countries. Most of the geochemical maps show exclusively natural background element concentrations with minor, or without, anthropogenic influence. The maximum extent of the last glaciation is marked as a discrete element concentration break, and a distinct difference occurs in element concentration levels between the soil of northern and southern Europe, most likely an effect of soil genesis, age and weathering. The Sb, W and Li concentrations in soil provide a general overview of element spatial distribution in relation to complexity of the underlying bedrock and element mobility in the surface environment at the continental-scale. The chemical composition of agricultural soil represents largely the primary mineralogy of the source bedrock, the effects of pre- and post-depositional chemical weathering, formation of secondary products, such as clays, and element mobility, either by leaching or mineral sorting. Observed geochemical patterns of Li, W and Sb can be often linked with known mineralisation as recorded in the ProMine Mineral Database, where elements in question occur either as main or secondary resources. Anthropogenic impact has only been identified locally, predominantly in the vicinity of large urban agglomerations. Unexplained high element concentrations may potentially indicate new sources for high-tech elements and should be investigated at a more detailed scale.
KW - Agricultural soil
KW - Antimony
KW - Critical elements
KW - Geochemistry
KW - Lithium
KW - Tungsten
KW - Weathering
UR - http://www.scopus.com/inward/record.url?scp=85074177874&partnerID=8YFLogxK
U2 - 10.1016/j.apgeochem.2019.104425
DO - 10.1016/j.apgeochem.2019.104425
M3 - Short Survey/Scientific Report
AN - SCOPUS:85074177874
SN - 0883-2927
VL - 111
SP - 1
EP - 20
JO - Applied Geochemistry
JF - Applied Geochemistry
M1 - 104425
ER -