Genetic studies of freshwater turtles and tortoises: a review of the past 70 years

Nancy FitzSimmons, Kristen Hart

    Research output: Contribution to journalArticle

    Abstract

    Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management
    Original languageEnglish
    Pages (from-to)15-46
    Number of pages32
    JournalChelonian Research Monographs
    Volume4
    Publication statusPublished - 2007

    Fingerprint

    tortoises
    turtles
    mating systems
    genetic markers
    population genetics
    allozymes
    karyotyping
    genetic relationships
    analytical methods
    gene flow
    extinction
    Biological Sciences
    genetic variation
    loci
    genome
    phylogeny
    DNA

    Cite this

    @article{848136a8b9f04215b72824ece9094b8e,
    title = "Genetic studies of freshwater turtles and tortoises: a review of the past 70 years",
    abstract = "Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42{\%} are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management",
    author = "Nancy FitzSimmons and Kristen Hart",
    year = "2007",
    language = "English",
    volume = "4",
    pages = "15--46",
    journal = "Chelonian Research Monographs",
    issn = "1088-7105",

    }

    Genetic studies of freshwater turtles and tortoises: a review of the past 70 years. / FitzSimmons, Nancy; Hart, Kristen.

    In: Chelonian Research Monographs, Vol. 4, 2007, p. 15-46.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Genetic studies of freshwater turtles and tortoises: a review of the past 70 years

    AU - FitzSimmons, Nancy

    AU - Hart, Kristen

    PY - 2007

    Y1 - 2007

    N2 - Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management

    AB - Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management

    M3 - Article

    VL - 4

    SP - 15

    EP - 46

    JO - Chelonian Research Monographs

    JF - Chelonian Research Monographs

    SN - 1088-7105

    ER -