TY - JOUR
T1 - Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015
AU - Wang, Haidong
AU - Bhutta, Zulfiqar
AU - Coates, Matthew
AU - Dandona, Lalit
AU - Diallo, Khassoum
AU - Franca, Elisabeth
AU - Fraser, Maya
AU - Fullman, Nancy
AU - Gething, Peter
AU - Hay, Simon
AU - KINFU, Yohannes
AU - al.,, et
N1 - Funding Information:
We would like to thank the countless individuals who have contributed to the Global Burden of Disease Study 2015 in various capacities. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with licence number SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law, 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. The following individuals would like to acknowledge various forms of institutional support: Simon I Hay is funded by a Senior Research Fellowship from the Wellcome Trust (#095066), and grants from the Bill & Melinda Gates Foundation (OPP1119467, OPP1093011, OPP1106023 and OPP1132415). Panniyammakal Jeemon is supported by a clinical and public health intermediate fellowship from the Wellcome Trust-DBT India Alliance (2015–2020). Boris Bikbov, Giuseppe Remuzzi, and Norberto Perico acknowledges that work related to this paper has been done on the behalf of the GBD Genitourinary Disease Expert Group supported by the International Society of Nephrology (ISN). Samir Bhatt would like to acknowledge the support of Department of infectious disease and Epidemiology Imperial College London London, W2 1PG, UK. Ana Maria Nogales Vasconcelos would like to inform that her team in Brazil received funding from Ministry of Health—process number: 25000192049/2014-14. Rodrigo Sarmiento-Suarez receives institutional support from Universidad de Ciencias Aplicadas y Ambientales, UDCA, Bogotá Colombia. Amador Goodridge would like to acknowledge funding for me from Sistema Nacional de Investigadores de Panamá-SNI. José das Neves was supported in his contribution to this work by a Fellowship from Fundação para a Ciência e a Tecnologia, Portugal (SFRH/BPD/92934/2013). Rodrigo Sarmiento-Suarez receives institutional support from Universidad de Ciencias Aplicadas y Ambientales, UDCA, Bogotá, Colombia. Ulrich O Mueller gratefully acknowledges funding by the German National Cohort Consortium (O1ER1511D). No individuals acknowledged received additional compensation for their efforts.
Funding Information:
Itamar S Santos reports grants from FAPESP (Brazilian public agency), outside the submitted work. Carl Abelardo T Antonio reports grants, personal fees and non-financial support from Johnson & Johnson (Philippines), Inc, outside the submitted work. Ferrán Catalá-López is supported in part by grant PROMETEOII/2015/021 from Generalitat Valenciana. Walter Mendoza is currently employed by the Peru Country Office of the United Nations Population Fund, an institution which does not necessarily endorse this study. Jasvinder A Singh has received research grants from Takeda and Savient and consultant fees from Savient, Takeda, Regeneron, Merz, Iroko, Bioiberica, Crealta and Allergan pharmaceuticals, WebMD, UBM LLC, and the American College of Rheumatology; he serves as the principal investigator for an investigator-initiated study funded by Horizon pharmaceuticals through a grant to DINORA, Inc, a 501 (c)(3) entity; is a member of the executive of OMERACT, an organisation that develops outcome measures in rheumatology and receives arms-length funding from 36 companies; a member of the American College of Rheumatology's (ACR) Annual Meeting Planning Committee (AMPC); Chair of the ACR Meet-the-Professor, Workshop and Study Group Subcommittee; and a member of the Veterans Affairs Rheumatology Field Advisory Committee. Ai Koyanagi's work is supported by the Miguel Servet contract financed by the CP13/00150 and PI15/00862 projects, integrated into the National R + D + I and funded by the ISCIII—General Branch Evaluation and Promotion of Health Research—and the European Regional Development Fund (ERDF-FEDER). Donal Bisanzio is supported by Bill & Melinda Gates Foundation (#OPP1068048). Kebede Deribe is supported by a Wellcome Trust Fellowship in Public Health and Tropical Medicine (grant number 099876). Thomas Fürst has received financial support from the Swiss National Science Foundation (SNSF; project no P300P3-154634). Jost B Jonas reports personal fees from Consultant for Mundipharma Co (Cambridge, UK); other from patent application with University of Heidelberg (Heidelberg, Germany) (title: Agents for use in the therapeutic or prophylactic treatment of myopia or hyperopia; Europäische Patentanmeldung 15 000 771.4), and other from patent holder with Biocompatibles UK Ltd. (Franham, Surrey, UK) (title: Treatment of eye diseases using encapsulated cells encoding and secreting neuroprotective factor and/or anti-angiogenic factor; patent number: 20120263794), outside the submitted work. Stefanos Tyrovolas's work is supported by the Foundation for Education and European Culture (IPEP), the Sara Borrell postdoctoral programme (reference number CD15/00019 from the Instituto de Salud Carlos III (ISCIII, Spain) and the Fondos Europeo de Desarrollo Regional (FEDER). Yogeshwar Kalkonde is a Wellcome Trust/DBT Intermediate Fellow in Public Health. Sun Ha Jee has been funded by a grant of the Korean Health Technology R&D project (HI14C2686), Korea. Miia Kivipelto receives research support from the Academy of Finland, the Swedish Research Council, Alzheimerfonden, Alzheimer's Research & Prevention Foundation, Center for Innovative Medicine (CIMED) at Karolinska Institutet South Campus, AXA Research Fund and the Sheika Salama Bint Hamdan Al Nahyan Foundation. Shireen Sindi receives postdoctoral funding from the Fonds de la recherche en santé du Québec (FRSQ), including its renewal. Charles D A Wolfe's research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. The other authors declare no competing interests.
Publisher Copyright:
© 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.
PY - 2016/10/8
Y1 - 2016/10/8
N2 - Background Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. Methods Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1–4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980–2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age–sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, 5·8 million (95% uncertainty interval [UI] 5·7–6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7–53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3–43·6) to 2·6 million (2·6–2·7) neonatal deaths and 47·0% (35·1–57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6–3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone. Interpretation Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030. Funding Bill & Melinda Gates Foundation.
AB - Background Established in 2000, Millennium Development Goal 4 (MDG4) catalysed extraordinary political, financial, and social commitments to reduce under-5 mortality by two-thirds between 1990 and 2015. At the country level, the pace of progress in improving child survival has varied markedly, highlighting a crucial need to further examine potential drivers of accelerated or slowed decreases in child mortality. The Global Burden of Disease 2015 Study (GBD 2015) provides an analytical framework to comprehensively assess these trends for under-5 mortality, age-specific and cause-specific mortality among children under 5 years, and stillbirths by geography over time. Methods Drawing from analytical approaches developed and refined in previous iterations of the GBD study, we generated updated estimates of child mortality by age group (neonatal, post-neonatal, ages 1–4 years, and under 5) for 195 countries and territories and selected subnational geographies, from 1980–2015. We also estimated numbers and rates of stillbirths for these geographies and years. Gaussian process regression with data source adjustments for sampling and non-sampling bias was applied to synthesise input data for under-5 mortality for each geography. Age-specific mortality estimates were generated through a two-stage age–sex splitting process, and stillbirth estimates were produced with a mixed-effects model, which accounted for variable stillbirth definitions and data source-specific biases. For GBD 2015, we did a series of novel analyses to systematically quantify the drivers of trends in child mortality across geographies. First, we assessed observed and expected levels and annualised rates of decrease for under-5 mortality and stillbirths as they related to the Soci-demographic Index (SDI). Second, we examined the ratio of recorded and expected levels of child mortality, on the basis of SDI, across geographies, as well as differences in recorded and expected annualised rates of change for under-5 mortality. Third, we analysed levels and cause compositions of under-5 mortality, across time and geographies, as they related to rising SDI. Finally, we decomposed the changes in under-5 mortality to changes in SDI at the global level, as well as changes in leading causes of under-5 deaths for countries and territories. We documented each step of the GBD 2015 child mortality estimation process, as well as data sources, in accordance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, 5·8 million (95% uncertainty interval [UI] 5·7–6·0) children younger than 5 years died in 2015, representing a 52·0% (95% UI 50·7–53·3) decrease in the number of under-5 deaths since 1990. Neonatal deaths and stillbirths fell at a slower pace since 1990, decreasing by 42·4% (41·3–43·6) to 2·6 million (2·6–2·7) neonatal deaths and 47·0% (35·1–57·0) to 2·1 million (1·8-2·5) stillbirths in 2015. Between 1990 and 2015, global under-5 mortality decreased at an annualised rate of decrease of 3·0% (2·6–3·3), falling short of the 4·4% annualised rate of decrease required to achieve MDG4. During this time, 58 countries met or exceeded the pace of progress required to meet MDG4. Between 2000, the year MDG4 was formally enacted, and 2015, 28 additional countries that did not achieve the 4·4% rate of decrease from 1990 met the MDG4 pace of decrease. However, absolute levels of under-5 mortality remained high in many countries, with 11 countries still recording rates exceeding 100 per 1000 livebirths in 2015. Marked decreases in under-5 deaths due to a number of communicable diseases, including lower respiratory infections, diarrhoeal diseases, measles, and malaria, accounted for much of the progress in lowering overall under-5 mortality in low-income countries. Compared with gains achieved for infectious diseases and nutritional deficiencies, the persisting toll of neonatal conditions and congenital anomalies on child survival became evident, especially in low-income and low-middle-income countries. We found sizeable heterogeneities in comparing observed and expected rates of under-5 mortality, as well as differences in observed and expected rates of change for under-5 mortality. At the global level, we recorded a divergence in observed and expected levels of under-5 mortality starting in 2000, with the observed trend falling much faster than what was expected based on SDI through 2015. Between 2000 and 2015, the world recorded 10·3 million fewer under-5 deaths than expected on the basis of improving SDI alone. Interpretation Gains in child survival have been large, widespread, and in many places in the world, faster than what was anticipated based on improving levels of development. Yet some countries, particularly in sub-Saharan Africa, still had high rates of under-5 mortality in 2015. Unless these countries are able to accelerate reductions in child deaths at an extraordinary pace, their achievement of proposed SDG targets is unlikely. Improving the evidence base on drivers that might hasten the pace of progress for child survival, ranging from cost-effective intervention packages to innovative financing mechanisms, is vital to charting the pathways for ultimately ending preventable child deaths by 2030. Funding Bill & Melinda Gates Foundation.
KW - Child Mortality/trends
KW - Communicable Diseases
KW - Global Health
KW - Humans
KW - Infant
KW - Infant Mortality/trends
KW - Malaria
KW - Stillbirth
UR - http://www.scopus.com/inward/record.url?scp=84994071373&partnerID=8YFLogxK
U2 - 10.1016/S0140-6736(16)31575-6
DO - 10.1016/S0140-6736(16)31575-6
M3 - Article
C2 - 27733285
SN - 0140-6736
VL - 388
SP - 1725
EP - 1774
JO - Lancet
JF - Lancet
IS - 10053
ER -