TY - JOUR
T1 - Health and climate related ecosystem services provided by street trees in the urban environment
AU - Salmond, Jennifer A.
AU - Tadaki, Marc
AU - Vardoulakis, Sotiris
AU - Arbuthnott, Katherine
AU - Coutts, Andrew
AU - Demuzere, Matthias
AU - Dirks, Kim N.
AU - Heaviside, Clare
AU - Lim, Shanon
AU - MacIntyre, Helen
AU - McInnes, Rachel N.
AU - Wheeler, Benedict W.
N1 - Funding Information:
This research was partly funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene and Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of Exeter, University College London, and the Met Office. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. M. Demuzere is funded by the Flemish regional government through a contract as a Fund for Scientific Research (FWO) post-doctoral position. J. Salmond was funded by the University of Auckland. The Cooperative Research Center for Water Sensitive Cities is a Commonwealth of Australia supported programme. We also acknowledge the support of Healthy-Polis: International Consortium for Urban Environmental Health and Sustainability.
Funding Information:
This supplement has not been supported by sponsorship. Funding for publication is provided by Research Enhancement funds for Jennifer Salmond provided by the University of Auckland. This article has been published as part of Environmental Health Volume 15 Suppl 1, 2016: Healthy-Polis: Challenges and Opportunities for Urban Environmental Health and Sustainability. The full contents of the supplement can be found at http://www.ehjournal.net/supplements/15/S1.
Publisher Copyright:
© 2016 Salmond et al.
PY - 2016
Y1 - 2016
N2 - Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed. In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places. We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
AB - Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed. In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places. We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
KW - Climate
KW - Ecosystems services
KW - Health impacts
KW - Street trees
UR - http://www.scopus.com/inward/record.url?scp=84995543025&partnerID=8YFLogxK
U2 - 10.1186/s12940-016-0103-6
DO - 10.1186/s12940-016-0103-6
M3 - Review article
C2 - 26961700
AN - SCOPUS:84995543025
SN - 1476-069X
VL - 15
SP - 1
EP - 17
JO - Environmental Health: A Global Access Science Source
JF - Environmental Health: A Global Access Science Source
M1 - 36
ER -