Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time

Aldo Compagnoni, Sam Levin, Dylan Z. Childs, Stan Harpole, Maria Paniw, Gesa Römer, Jean H. Burns, Judy Che-Castaldo, Nadja Rüger, Georges Kunstler, Joanne M. Bennett, C. Ruth Archer, Owen R. Jones, Roberto Salguero-Gómez, Tiffany M. Knight

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)
64 Downloads (Pure)

Abstract

There is an urgent need to synthesize the state of our knowledge on plant responses to climate. The availability of open-access data provide opportunities to examine quantitative generalizations regarding which biomes and species are most responsive to climate drivers. Here, we synthesize time series of structured population models from 162 populations of 62 plants, mostly herbaceous species from temperate biomes, to link plant population growth rates (λ) to precipitation and temperature drivers. We expect: (1) more pronounced demographic responses to precipitation than temperature, especially in arid biomes; and (2) a higher climate sensitivity in short-lived rather than long-lived species. We find that precipitation anomalies have a nearly three-fold larger effect on λ than temperature. Species with shorter generation time have much stronger absolute responses to climate anomalies. We conclude that key species-level traits can predict plant population responses to climate, and discuss the relevance of this generalization for conservation planning.

Original languageEnglish
Article number1824
Pages (from-to)1-8
Number of pages8
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Dec 2021

Fingerprint

Dive into the research topics of 'Herbaceous perennial plants with short generation time have stronger responses to climate anomalies than those with longer generation time'. Together they form a unique fingerprint.

Cite this