TY - JOUR
T1 - Hot alkaline lysis gDNA extraction from formalin-fixed archival tissues
AU - Hahn, Erin E.
AU - Alexander, Marina
AU - Stiller, Jiri
AU - Grewe, Peter M.
AU - Holleley, Clare E.
N1 - Publisher Copyright:
Copyright: © 2024 Hahn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/1
Y1 - 2024/1
N2 - Formalin fixation of natural history specimens and histopathological material has historically been viewed as an impediment to successful genomic analysis. However, the development of extraction methods specifically tailored to contend with heavily crosslinked archival tissues, re-contextualises millions of previously overlooked specimens as viable molecular assets. Here, we present an easy-to-follow protocol for screening archival wet specimens for molecular viability and subsequent genomic DNA extraction suitable for sequencing. The protocol begins with non-destructive assessment of specimen degradation and preservation media conditions to allow both museum curators and researchers to select specimens most likely to yield an acceptable proportion (20–60%) of mappable endogenous DNA during short-read DNA sequencing. The extraction protocol uses hot alkaline lysis in buffer (0.1M NaOH, 1% SDS, pH 13) to simultaneously lyse and de-crosslink the tissue. To maximise DNA recovery, phenol:chloroform extraction is coupled with a small-fragment optimised SPRI bead clean up. Applied to well-preserved archival tissues, the protocol can yield 1–2 μg DNA per 50 mg of tissue with mean fragment sizes typically ranging from 50–150 bp, which is suitable to recover genomic DNA sufficient to reconstruct complete mitochondrial genomes and achieve up to 25X nuclear genome coverage. We provide guidance for read mapping to a reference genome and discuss the limitations of relying on small fragments for SNP genotyping and de novo genome assembly. This protocol opens the door to broader-scale genetic and phylogenetic analysis of historical specimens, contributing to a deeper understanding of evolutionary trends and adaptation in response to changing environments.
AB - Formalin fixation of natural history specimens and histopathological material has historically been viewed as an impediment to successful genomic analysis. However, the development of extraction methods specifically tailored to contend with heavily crosslinked archival tissues, re-contextualises millions of previously overlooked specimens as viable molecular assets. Here, we present an easy-to-follow protocol for screening archival wet specimens for molecular viability and subsequent genomic DNA extraction suitable for sequencing. The protocol begins with non-destructive assessment of specimen degradation and preservation media conditions to allow both museum curators and researchers to select specimens most likely to yield an acceptable proportion (20–60%) of mappable endogenous DNA during short-read DNA sequencing. The extraction protocol uses hot alkaline lysis in buffer (0.1M NaOH, 1% SDS, pH 13) to simultaneously lyse and de-crosslink the tissue. To maximise DNA recovery, phenol:chloroform extraction is coupled with a small-fragment optimised SPRI bead clean up. Applied to well-preserved archival tissues, the protocol can yield 1–2 μg DNA per 50 mg of tissue with mean fragment sizes typically ranging from 50–150 bp, which is suitable to recover genomic DNA sufficient to reconstruct complete mitochondrial genomes and achieve up to 25X nuclear genome coverage. We provide guidance for read mapping to a reference genome and discuss the limitations of relying on small fragments for SNP genotyping and de novo genome assembly. This protocol opens the door to broader-scale genetic and phylogenetic analysis of historical specimens, contributing to a deeper understanding of evolutionary trends and adaptation in response to changing environments.
UR - http://www.scopus.com/inward/record.url?scp=85181759711&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0296491
DO - 10.1371/journal.pone.0296491
M3 - Other Journal Article
C2 - 38165968
AN - SCOPUS:85181759711
SN - 1932-6203
VL - 19
SP - 1
EP - 6
JO - PLoS One
JF - PLoS One
IS - 1 January
M1 - e0296491
ER -