TY - JOUR
T1 - How low can they go
T2 - A comparison between dog (Canis familiaris) and environmental DNA detection of invasive koi carp (Cyprinus rubrofuscus)
AU - Collins, Melissa A.
AU - Browne, Clare M.
AU - Edwards, Timothy L.
AU - Ling, Nicholas
AU - Tempero, Grant W.
AU - Gleeson, Dianne M.
AU - Crockett, Kymberly
AU - Quaife, Jesse
N1 - Funding Information:
We would like to acknowledge the Ministry of Business, Innovation and Employment [grant number UOWX1805 ] who funded this project. We would also like to acknowledge Rob Bakker, who constructed the scent-detection apparatus and helped with any mechanical problems; the laboratory technicians who helped with the experimental set-up; and the dog owners for allowing their dogs to participate in the study.
Publisher Copyright:
© 2022 The Authors
PY - 2022/10
Y1 - 2022/10
N2 - Carp (Cyprinus sp.) are a highly invasive fish that pose a significant threat to freshwater ecosystems worldwide. At high biomasses (i.e., ≥100 kg/ha), the benthic feeding behaviour of carp can have deleterious ecosystem effects, often changing clear, macrophyte dominant waterbodies to turbid-phytoplankton dominant ecosystems. To prevent carp from reaching ecologically harmful biomasses, early detection (i.e., before population establishment) and rapid control actions are vital. Boat electrofishing, netting, and environmental DNA (eDNA) are commonly used to survey for carp, but these methods can be expensive or time inefficient when fish densities are low. Scent-detection dogs have proven efficacious at detecting terrestrial and aquatic species and could represent an efficient method for early detection of carp invasions. Here, we investigated a dog's sensitivity and specificity to carp scent using a multiple probe design experiment. The dog was trained to use an automated carousel independently of its handler and assessed water samples from aquaria containing either no fish scent (n = 3, non-target), goldfish (Carassius auratus) scent (n = 5, non-target) or carp scent (n = 9, target). The goldfish samples and six of the target samples were presented to the dog at a standard fish biomass concentration of 15.5 mg/L. The remaining three target samples (probes) were systematically diluted to determine the dog's detection threshold. Results showed that the dog could detect carp housed under laboratory conditions down to a dilution equivalent biomass of 9.3 kg/ha (i.e., 0.5 mg carp/L), which is well below the likely biomass threshold of carp known to cause significant ecological impacts. The dog's scent-detection performance was then compared with eDNA, an existing survey method. Quantitative PCR conducted on DNA extracted from laboratory aquaria filtrate revealed that the species-specific primer could detect carp at 9.3 kg/ha, but amplification rates at this dilution were low, as were all dilutions below the limit of quantification (≈160 kg/ha). These findings suggest that dogs could provide an accurate and highly sensitive method invasive fish detection. However, before deployment as a carp surveillance method, dogs’ performance on water samples collected from natural aquatic systems (i.e., lakes, ponds, rivers) needs to be evaluated. To our knowledge this is the first published study of its kind comparing a dog's sensitivity to eDNA, and investigating the potential utility of dogs as an invasive fish detection method.
AB - Carp (Cyprinus sp.) are a highly invasive fish that pose a significant threat to freshwater ecosystems worldwide. At high biomasses (i.e., ≥100 kg/ha), the benthic feeding behaviour of carp can have deleterious ecosystem effects, often changing clear, macrophyte dominant waterbodies to turbid-phytoplankton dominant ecosystems. To prevent carp from reaching ecologically harmful biomasses, early detection (i.e., before population establishment) and rapid control actions are vital. Boat electrofishing, netting, and environmental DNA (eDNA) are commonly used to survey for carp, but these methods can be expensive or time inefficient when fish densities are low. Scent-detection dogs have proven efficacious at detecting terrestrial and aquatic species and could represent an efficient method for early detection of carp invasions. Here, we investigated a dog's sensitivity and specificity to carp scent using a multiple probe design experiment. The dog was trained to use an automated carousel independently of its handler and assessed water samples from aquaria containing either no fish scent (n = 3, non-target), goldfish (Carassius auratus) scent (n = 5, non-target) or carp scent (n = 9, target). The goldfish samples and six of the target samples were presented to the dog at a standard fish biomass concentration of 15.5 mg/L. The remaining three target samples (probes) were systematically diluted to determine the dog's detection threshold. Results showed that the dog could detect carp housed under laboratory conditions down to a dilution equivalent biomass of 9.3 kg/ha (i.e., 0.5 mg carp/L), which is well below the likely biomass threshold of carp known to cause significant ecological impacts. The dog's scent-detection performance was then compared with eDNA, an existing survey method. Quantitative PCR conducted on DNA extracted from laboratory aquaria filtrate revealed that the species-specific primer could detect carp at 9.3 kg/ha, but amplification rates at this dilution were low, as were all dilutions below the limit of quantification (≈160 kg/ha). These findings suggest that dogs could provide an accurate and highly sensitive method invasive fish detection. However, before deployment as a carp surveillance method, dogs’ performance on water samples collected from natural aquatic systems (i.e., lakes, ponds, rivers) needs to be evaluated. To our knowledge this is the first published study of its kind comparing a dog's sensitivity to eDNA, and investigating the potential utility of dogs as an invasive fish detection method.
KW - Carp
KW - Conservation
KW - Environmental DNA
KW - Freshwater
KW - Invasive fish
KW - Scent detection dogs
UR - http://www.scopus.com/inward/record.url?scp=85137409550&partnerID=8YFLogxK
U2 - 10.1016/j.applanim.2022.105729
DO - 10.1016/j.applanim.2022.105729
M3 - Article
AN - SCOPUS:85137409550
SN - 0168-1591
VL - 255
SP - 1
EP - 8
JO - Applied Animal Behaviour Science
JF - Applied Animal Behaviour Science
M1 - 105729
ER -