Hydrogeological Landscapes framework: a biophysical approach to landscape characterisation and salinity hazard assessment

C. L. Moore, B. R. Jenkins, A. L. Cowood, A. Nicholson, R. Muller, A. Wooldridge, W. Cook, J. R. Wilford, M. Littleboy, M. Winkler, K. Harvey

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


In Australia, salinity has the potential to affect up to 17 million hectares of agricultural and pastoral land. For many degraded sites, biophysical hazards are often poorly understood and consequently poorly managed. Attempts to remediate areas affected by salinity have met with varying degrees of success. The New South Wales (NSW) Office of Environment and Heritage, NSW Department of Primary Industries, University of Canberra and Geoscience Australia have collaborated to develop a biophysical expert-based approach for the assessment and management of salinity within landscapes. The Hydrogeological Landscape (HGL) framework provides a structure for understanding how salinity manifests in the landscape, how differences in salinity are expressed across the landscape and how salinity may best be managed. The HGL framework merges the flow dynamics of the groundwater flow system with the landscape elements of the soil landscape or regolith landform approaches. This is the first approach to specifically address all three manifestations of salinity: land salinity, in-stream salt load and in-stream salt concentration. The HGL framework methodology recognises the interplay between surface and subsurface flow systems, as well as the capacity for water to interact with salt stores in the landscape, and identifies biophysical landscape characteristics (e.g. amount and type of vegetation cover, typical land use practice) that affect these interactions. The HGL framework is an expert system that integrates the spatial variability of landscape characteristics and salinity processes to produce a salinity hazard assessment for any given area.
Original languageEnglish
Pages (from-to)1-18
Number of pages18
JournalSoil Research
Issue number1
Publication statusPublished - 2018


Dive into the research topics of 'Hydrogeological Landscapes framework: a biophysical approach to landscape characterisation and salinity hazard assessment'. Together they form a unique fingerprint.

Cite this