Identifying Optimal Overload and Taper in Elite Swimmers over Time

Philippe Hellard, Marta Avalos, Christophe Hausswirth, David Pyne, Jean-Francois Toussaint, Inigo Mujika

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

The aim of this exploratory study was to identify the most influential training designs during the final six weeks of training (F6T) before a major swimming event, taking into account athletes' evolution over several seasons. Fifteen female and 17 male elite swimmers were followed for one to nine F6T periods. The F6T was divided into two sub-periods of a three-week overload period (OP) and a three-week taper period (TP). The final time trial performance was recorded for each swimmer in his or her specialty at the end of both OP and TP. The change in performances (ΔP) between OP and TP was recorded. Training variables were derived from the weekly training volume at several intensity levels as a percentage of the individual maximal volume measured at each intensity level, and the individual total training load (TTL) was considered to be the mean of the loads at these seven intensity levels. Also, training patterns were identified from TTL in the three weeks of both OP and TP by cluster analysis. Mixed-model was used to analyse the longitudinal data. The training pattern during OP that was associated with the greatest improvement in performance was a training load peak followed by a linear slow decay (84 ± 17, 81 ± 22, and 80 ± 19 % of the maximal training load measured throughout the F6T period for each subject, Mean ± SD) (p < 0.05). During TP, a training load peak in the 1(st) week associated with a slow decay design (57 ± 26, 45 ± 24 and 38 ± 14%) led to higher ΔP (p < 0.05). From the 1(st) to 3(rd) season, the best results were characterized by maintenance of a medium training load from OP to TP. Progressively from the 4(th) season, high training loads during OP followed by a sharp decrease during TP were associated with higher ΔP. Key PointsDuring the overload training period, a medium training load peak in the first week followed by an exponential slow decay training load design was linked to highest performance improvement.During the taper period, a training load peak in the first week associated with a slow decay design led to higher performances.Over the course of the swimmers' athletic careers, better performances were obtained with an increase in training load during the overload period followed by a sharper decrease in the taper period.Training loads schedules during the final six weeks of training before a major swimming event and changes over time could be prescribed on the basis of the model results.
Original languageEnglish
Pages (from-to)668-678
Number of pages11
JournalJournal of Sports Science and Medicine
Volume12
Issue number4
Publication statusPublished - Dec 2013
Externally publishedYes

Cite this

Hellard, P., Avalos, M., Hausswirth, C., Pyne, D., Toussaint, J-F., & Mujika, I. (2013). Identifying Optimal Overload and Taper in Elite Swimmers over Time. Journal of Sports Science and Medicine, 12(4), 668-678.
Hellard, Philippe ; Avalos, Marta ; Hausswirth, Christophe ; Pyne, David ; Toussaint, Jean-Francois ; Mujika, Inigo. / Identifying Optimal Overload and Taper in Elite Swimmers over Time. In: Journal of Sports Science and Medicine. 2013 ; Vol. 12, No. 4. pp. 668-678.
@article{4e05be854e2444d4b87cab0e1e0f05fb,
title = "Identifying Optimal Overload and Taper in Elite Swimmers over Time",
abstract = "The aim of this exploratory study was to identify the most influential training designs during the final six weeks of training (F6T) before a major swimming event, taking into account athletes' evolution over several seasons. Fifteen female and 17 male elite swimmers were followed for one to nine F6T periods. The F6T was divided into two sub-periods of a three-week overload period (OP) and a three-week taper period (TP). The final time trial performance was recorded for each swimmer in his or her specialty at the end of both OP and TP. The change in performances (ΔP) between OP and TP was recorded. Training variables were derived from the weekly training volume at several intensity levels as a percentage of the individual maximal volume measured at each intensity level, and the individual total training load (TTL) was considered to be the mean of the loads at these seven intensity levels. Also, training patterns were identified from TTL in the three weeks of both OP and TP by cluster analysis. Mixed-model was used to analyse the longitudinal data. The training pattern during OP that was associated with the greatest improvement in performance was a training load peak followed by a linear slow decay (84 ± 17, 81 ± 22, and 80 ± 19 {\%} of the maximal training load measured throughout the F6T period for each subject, Mean ± SD) (p < 0.05). During TP, a training load peak in the 1(st) week associated with a slow decay design (57 ± 26, 45 ± 24 and 38 ± 14{\%}) led to higher ΔP (p < 0.05). From the 1(st) to 3(rd) season, the best results were characterized by maintenance of a medium training load from OP to TP. Progressively from the 4(th) season, high training loads during OP followed by a sharp decrease during TP were associated with higher ΔP. Key PointsDuring the overload training period, a medium training load peak in the first week followed by an exponential slow decay training load design was linked to highest performance improvement.During the taper period, a training load peak in the first week associated with a slow decay design led to higher performances.Over the course of the swimmers' athletic careers, better performances were obtained with an increase in training load during the overload period followed by a sharper decrease in the taper period.Training loads schedules during the final six weeks of training before a major swimming event and changes over time could be prescribed on the basis of the model results.",
keywords = "Repeated measures, random-effects methodology, monitoring training, pre-taper and taper, elite swimmers, periodization",
author = "Philippe Hellard and Marta Avalos and Christophe Hausswirth and David Pyne and Jean-Francois Toussaint and Inigo Mujika",
year = "2013",
month = "12",
language = "English",
volume = "12",
pages = "668--678",
journal = "Journal of Sports Science and Medicine",
issn = "1303-2968",
publisher = "Department of Sports Medicine, Medical Faculty of Uludag University",
number = "4",

}

Hellard, P, Avalos, M, Hausswirth, C, Pyne, D, Toussaint, J-F & Mujika, I 2013, 'Identifying Optimal Overload and Taper in Elite Swimmers over Time', Journal of Sports Science and Medicine, vol. 12, no. 4, pp. 668-678.

Identifying Optimal Overload and Taper in Elite Swimmers over Time. / Hellard, Philippe; Avalos, Marta; Hausswirth, Christophe; Pyne, David; Toussaint, Jean-Francois; Mujika, Inigo.

In: Journal of Sports Science and Medicine, Vol. 12, No. 4, 12.2013, p. 668-678.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Identifying Optimal Overload and Taper in Elite Swimmers over Time

AU - Hellard, Philippe

AU - Avalos, Marta

AU - Hausswirth, Christophe

AU - Pyne, David

AU - Toussaint, Jean-Francois

AU - Mujika, Inigo

PY - 2013/12

Y1 - 2013/12

N2 - The aim of this exploratory study was to identify the most influential training designs during the final six weeks of training (F6T) before a major swimming event, taking into account athletes' evolution over several seasons. Fifteen female and 17 male elite swimmers were followed for one to nine F6T periods. The F6T was divided into two sub-periods of a three-week overload period (OP) and a three-week taper period (TP). The final time trial performance was recorded for each swimmer in his or her specialty at the end of both OP and TP. The change in performances (ΔP) between OP and TP was recorded. Training variables were derived from the weekly training volume at several intensity levels as a percentage of the individual maximal volume measured at each intensity level, and the individual total training load (TTL) was considered to be the mean of the loads at these seven intensity levels. Also, training patterns were identified from TTL in the three weeks of both OP and TP by cluster analysis. Mixed-model was used to analyse the longitudinal data. The training pattern during OP that was associated with the greatest improvement in performance was a training load peak followed by a linear slow decay (84 ± 17, 81 ± 22, and 80 ± 19 % of the maximal training load measured throughout the F6T period for each subject, Mean ± SD) (p < 0.05). During TP, a training load peak in the 1(st) week associated with a slow decay design (57 ± 26, 45 ± 24 and 38 ± 14%) led to higher ΔP (p < 0.05). From the 1(st) to 3(rd) season, the best results were characterized by maintenance of a medium training load from OP to TP. Progressively from the 4(th) season, high training loads during OP followed by a sharp decrease during TP were associated with higher ΔP. Key PointsDuring the overload training period, a medium training load peak in the first week followed by an exponential slow decay training load design was linked to highest performance improvement.During the taper period, a training load peak in the first week associated with a slow decay design led to higher performances.Over the course of the swimmers' athletic careers, better performances were obtained with an increase in training load during the overload period followed by a sharper decrease in the taper period.Training loads schedules during the final six weeks of training before a major swimming event and changes over time could be prescribed on the basis of the model results.

AB - The aim of this exploratory study was to identify the most influential training designs during the final six weeks of training (F6T) before a major swimming event, taking into account athletes' evolution over several seasons. Fifteen female and 17 male elite swimmers were followed for one to nine F6T periods. The F6T was divided into two sub-periods of a three-week overload period (OP) and a three-week taper period (TP). The final time trial performance was recorded for each swimmer in his or her specialty at the end of both OP and TP. The change in performances (ΔP) between OP and TP was recorded. Training variables were derived from the weekly training volume at several intensity levels as a percentage of the individual maximal volume measured at each intensity level, and the individual total training load (TTL) was considered to be the mean of the loads at these seven intensity levels. Also, training patterns were identified from TTL in the three weeks of both OP and TP by cluster analysis. Mixed-model was used to analyse the longitudinal data. The training pattern during OP that was associated with the greatest improvement in performance was a training load peak followed by a linear slow decay (84 ± 17, 81 ± 22, and 80 ± 19 % of the maximal training load measured throughout the F6T period for each subject, Mean ± SD) (p < 0.05). During TP, a training load peak in the 1(st) week associated with a slow decay design (57 ± 26, 45 ± 24 and 38 ± 14%) led to higher ΔP (p < 0.05). From the 1(st) to 3(rd) season, the best results were characterized by maintenance of a medium training load from OP to TP. Progressively from the 4(th) season, high training loads during OP followed by a sharp decrease during TP were associated with higher ΔP. Key PointsDuring the overload training period, a medium training load peak in the first week followed by an exponential slow decay training load design was linked to highest performance improvement.During the taper period, a training load peak in the first week associated with a slow decay design led to higher performances.Over the course of the swimmers' athletic careers, better performances were obtained with an increase in training load during the overload period followed by a sharper decrease in the taper period.Training loads schedules during the final six weeks of training before a major swimming event and changes over time could be prescribed on the basis of the model results.

KW - Repeated measures

KW - random-effects methodology

KW - monitoring training

KW - pre-taper and taper

KW - elite swimmers

KW - periodization

M3 - Article

VL - 12

SP - 668

EP - 678

JO - Journal of Sports Science and Medicine

JF - Journal of Sports Science and Medicine

SN - 1303-2968

IS - 4

ER -

Hellard P, Avalos M, Hausswirth C, Pyne D, Toussaint J-F, Mujika I. Identifying Optimal Overload and Taper in Elite Swimmers over Time. Journal of Sports Science and Medicine. 2013 Dec;12(4):668-678.