TY - JOUR
T1 - Large expert-curated database for benchmarking document similarity detection in biomedical literature search
AU - RELISH Consortium
AU - Brown, Peter
AU - Zhou, Yaoqi
AU - Tan, Aik Choon
AU - El-Esawi, Mohamed A.
AU - Liehr, Thomas
AU - Blanck, Oliver
AU - Gladue, Douglas P.
AU - Almeida, Gabriel M.F.
AU - Cernava, Tomislav
AU - Sorzano, Carlos O.
AU - Yeung, Andy W.K.
AU - Engel, Michael S.
AU - Chandrasekaran, Arun R.
AU - Muth, Thilo
AU - Staege, Martin S.
AU - Daulatabad, Swapna V.
AU - Widera, Darius
AU - Zhang, Junpeng
AU - Meule, Adrian
AU - Honjo, Ken
AU - Pourret, Olivier
AU - Yin, Cong Cong
AU - Zhang, Zhongheng
AU - Cascella, Marco
AU - Flegel, Willy A.
AU - Goodyear, Carl S.
AU - van Raaij, Mark J.
AU - Bukowy-Bieryllo, Zuzanna
AU - Campana, Luca G.
AU - Kurniawan, Nicholas A.
AU - Lalaouna, David
AU - Hüttner, Felix J.
AU - Ammerman, Brooke A.
AU - Ehret, Felix
AU - Cobine, Paul A.
AU - Tan, Ene Choo
AU - Han, Hyemin
AU - Xia, Wenfeng
AU - McCrum, Christopher
AU - Dings, Ruud P.M.
AU - Marinello, Francesco
AU - Nilsson, Henrik
AU - Nixon, Brett
AU - Voskarides, Konstantinos
AU - Yang, Long
AU - Costa, Vincent D.
AU - Bengtsson-Palme, Johan
AU - Bradshaw, William
AU - Grimm, Dominik G.
AU - Kumar, Nitin
AU - Martis, Elvis
AU - Prieto, Daniel
AU - Sabnis, Sandeep C.
AU - Amer, Said E.D.R.
AU - Liew, Alan W.C.
AU - Perco, Paul
AU - Rahimi, Farid
AU - Riva, Giuseppe
AU - Zhang, Chongxing
AU - Devkota, Hari P.
AU - Ogami, Koichi
AU - Basharat, Zarrin
AU - Fierz, Walter
AU - Siebers, Robert
AU - Tan, Kok H.
AU - Boehme, Karen A.
AU - Brenneisen, Peter
AU - Brown, James A.L.
AU - Dalrymple, Brian P.
AU - Harvey, David J.
AU - Ng, Grace
AU - Werten, Sebastiaan
AU - Bleackley, Mark
AU - Dai, Zhanwu
AU - Dhariwal, Raman
AU - Gelfer, Yael
AU - Hartmann, Marcus D.
AU - Miotla, Pawel
AU - Tamaian, Radu
AU - Govender, Pragashnie
AU - Gurney-Champion, Oliver J.
AU - Kauppila, Joonas H.
AU - Zhang, Xiaolei
AU - Echeverría, Natalia
AU - Subhash, Santhilal
AU - Sallmon, Hannes
AU - Tofani, Marco
AU - Bae, Taeok
AU - Bosch, Oliver
AU - Cuív, Páraic O.
AU - Danchin, Antoine
AU - Diouf, Barthelemy
AU - Eerola, Tuomas
AU - Evangelou, Evangelos
AU - Filipp, Fabian
AU - Klump, Hannes
AU - Kurgan, Lukasz
AU - Smith, Simon S.
AU - Terrier, Olivier
AU - Tuttle, Neil
AU - Ascher, David B.
AU - Janga, Sarath C.
AU - Schulte, Leon N.
AU - Becker, Daniel
AU - Browngardt, Christopher
AU - Bush, Stephen J.
AU - Gaullier, Guillaume
AU - Ide, Kazuki
AU - Meseko, Clement
AU - Werner, Gijsbert D.A.
AU - Zaucha, Jan
AU - Al-Farha, Abd A.
AU - Greenwald, Noah F.
AU - Popoola, Segun I.
AU - Rahman, Shaifur
AU - Xu, Jialin
AU - Yang, Sunny Y.
AU - Hiroi, Noboru
AU - Alper, Ozgul M.
AU - Baker, Chris I.
AU - Bitzer, Michael
AU - Chacko, George
AU - Debrabant, Birgit
AU - Dixon, Ray
AU - Forano, Evelyne
AU - Gilliham, Matthew
AU - Kelly, Sarah
AU - Klempnauer, Karl Heinz
AU - Lidbury, Brett A.
AU - Lin, Michael Z.
AU - Lynch, Iseult
AU - Ma, Wujun
AU - Maibach, Edward W.
AU - Mather, Diane E.
AU - Nandakumar, Kutty S.
AU - Ohgami, Robert S.
AU - Parchi, Piero
AU - Tressoldi, Patrizio
AU - Xue, Yu
AU - Armitage, Charles
AU - Barraud, Pierre
AU - Chatzitheochari, Stella
AU - Coelho, Luis P.
AU - Diao, Jiajie
AU - Doxey, Andrew C.
AU - Gobet, Angélique
AU - Hu, Pingzhao
AU - Kaiser, Stefan
AU - Mitchell, Kate M.
AU - Salama, Mohamed F.
AU - Shabalin, Ivan G.
AU - Song, Haijun
AU - Stevanovic, Dejan
AU - Yadollahpour, Ali
AU - Zeng, Erliang
AU - Zinke, Katharina
AU - Alimba, C. G.
AU - Beyene, Tariku J.
AU - Cao, Zehong
AU - Chan, Sherwin S.
AU - Gatchell, Michael
AU - Kleppe, Andreas
AU - Piotrowski, Marcin
AU - Torga, Gonzalo
AU - Woldesemayat, Adugna A.
AU - Cosacak, Mehmet I.
AU - Haston, Scott
AU - Ross, Stephanie A.
AU - Williams, Richard
AU - Wong, Alvin
AU - Abramowitz, Matthew K.
AU - Effiong, Andem
AU - Lee, Senhong
AU - Abid, Muhammad B.
AU - Agarabi, Cyrus
AU - Alaux, Cedric
AU - Albrecht, Dirk R.
AU - Atkins, Gerald J.
AU - Beck, Charles R.
AU - Bonvin, A. M.J.J.
AU - Bourke, Emer
AU - Brand, Thomas
AU - Braun, Ralf J.
AU - Bull, James A.
AU - Cardoso, Pedro
AU - Carter, Dee
AU - Delahay, Robin M.
AU - Ducommun, Bernard
AU - Duijf, Pascal H.G.
AU - Epp, Trevor
AU - Eskelinen, Eeva Liisa
AU - Fallah, Mazyar
AU - Farber, Debora B.
AU - Fernandez-Triana, Jose
AU - Feyerabend, Frank
AU - Florio, Tullio
AU - Friebe, Michael
AU - Furuta, Saori
AU - Gabrielsen, Mads
AU - Gruber, Jens
AU - Grybos, Malgorzata
AU - Han, Qian
AU - Heinrich, Michael
AU - Helanterä, Heikki
AU - Huber, Michael
AU - Jeltsch, Albert
AU - Jiang, Fan
AU - Josse, Claire
AU - Jurman, Giuseppe
AU - Kamiya, Haruyuki
AU - de Keersmaecker, Kim
AU - Kristiansson, Erik
AU - de Leeuw, Frank Erik
AU - Li, Jiuyong
AU - Liang, Shide
AU - Lopez-Escamez, Jose A.
AU - Lopez-Ruiz, Francisco J.
AU - Marchbank, Kevin J.
AU - Marschalek, Rolf
AU - Martín, Carmen S.
AU - Miele, Adriana E.
AU - Montagutelli, Xavier
AU - Morcillo, Esteban
AU - Nicoletti, Rosario
AU - Niehof, Monika
AU - O'Toole, Ronan
AU - Ohtomo, Toshihiko
AU - Oster, Henrik
AU - Palma, Jose Alberto
AU - Paterson, Russell
AU - Peifer, Mark
AU - Portilla, Maribel
AU - Portillo, M. C.
AU - Pritchard, Antonia L.
AU - Pusch, Stefan
AU - Raghava, Gajendra P.S.
AU - Roberts, Nicola J.
AU - Ross, Kehinde
AU - Schuele, Birgitt
AU - Sergeant, Kjell
AU - Shen, Jun
AU - Stella, Alessandro
AU - Sukocheva, Olga
AU - Uversky, Vladimir N.
AU - Vanneste, Sven
AU - Villet, Martin H.
AU - Lee, Moon Soo
AU - Nammi, Srinivas
AU - Bail, Kasia
AU - Zhang, Wei
AU - Mavoa, Suzanne
N1 - Publisher Copyright:
© The Author(s) 2019. Published by Oxford University Press.
PY - 2019
Y1 - 2019
N2 - Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science.
AB - Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science.
UR - http://www.scopus.com/inward/record.url?scp=85082592913&partnerID=8YFLogxK
U2 - 10.1093/database/baz085
DO - 10.1093/database/baz085
M3 - Short Survey/Scientific Report
C2 - 33326193
SN - 1758-0463
VL - 2019
SP - 1
EP - 67
JO - Database : the journal of biological databases and curation
JF - Database : the journal of biological databases and curation
ER -